1
|
Tang Y, Huang W, Liu R, Yu Y. Learning Interpretable Brain Functional Connectivity via Self-Supervised Triplet Network With Depth-Wise Attention. IEEE J Biomed Health Inform 2024; 28:6685-6698. [PMID: 39028590 DOI: 10.1109/jbhi.2024.3429169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Brain functional connectivity has been widely explored to reveal the functional interaction dynamics between the brain regions. However, conventional connectivity measures rely on deterministic models demanding application-specific empirical analysis, while deep learning approaches focus on finding discriminative features for state classification, having limited capability to capture the interpretable connectivity characteristics. To address the challenges, this study proposes a self-supervised triplet network with depth-wise attention (TripletNet-DA) to generate the functional connectivity: 1) TripletNet-DA firstly utilizes channel-wise transformations for temporal data augmentation, where the correlated & uncorrelated sample pairs are constructed for self-supervised training, 2) Channel encoder is designed with a convolution network to extract the deep features, while similarity estimator is employed to generate the similarity pairs and the functional connectivity representations, 3) TripletNet-DA applies Triplet loss with anchor-negative similarity penalty for model training, where the similarities of uncorrelated sample pairs are minimized to enhance model's learning capability. Experimental results on pathological EEG datasets (Autism Spectrum Disorder, Major Depressive Disorder) indicate that 1) TripletNet-DA demonstrates superiority in both ASD discrimination and MDD classification than the state-of-the-art counterparts, where the connectivity features in beta & gamma bands have respectively achieved the accuracy of 97.05%, 98.32% for ASD discrimination, 89.88%, 91.80% for MDD classification in the eyes-closed condition and 90.90%, 92.26% in the eyes-open condition, 2) TripletNet-DA enables to uncover significant differences of functional connectivity between ASD EEG and TD ones, and the prominent connectivity links are in accordance with the empirical findings, thus providing potential biomarkers for clinical ASD analysis.
Collapse
|
2
|
Yao R, Song M, Shi L, Pei Y, Li H, Tan S, Wang B. Microstate D as a Biomarker in Schizophrenia: Insights from Brain State Transitions. Brain Sci 2024; 14:985. [PMID: 39451999 PMCID: PMC11505886 DOI: 10.3390/brainsci14100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives. There is a significant correlation between EEG microstate and the neurophysiological basis of mental illness, brain state, and cognitive function. Given that the unclear relationship between network dynamics and different microstates, this paper utilized microstate, brain network, and control theories to understand the microstate characteristics of short-term memory task, aiming to mechanistically explain the most influential microstates and brain regions driving the abnormal changes in brain state transitions in patients with schizophrenia. Methods. We identified each microstate and analyzed the microstate abnormalities in schizophrenia patients during short-term memory tasks. Subsequently, the network dynamics underlying the primary microstates were studied to reveal the relationships between network dynamics and microstates. Finally, using control theory, we confirmed that the abnormal changes in brain state transitions in schizophrenia patients are driven by specific microstates and brain regions. Results. The frontal-occipital lobes activity of microstate D decreased significantly, but the left frontal lobe of microstate B increased significantly in schizophrenia, when the brain was moving toward the easy-to-reach states. However, the frontal-occipital lobes activity of microstate D decreased significantly in schizophrenia, when the brain was moving toward the hard-to-reach states. Microstate D showed that the right-frontal activity had a higher priority than the left-frontal, but microstate B showed that the left-frontal priority decreased significantly in schizophrenia, when changes occur in the synchronization state of the brain. Conclusions. In conclusion, microstate D may be a biomarker candidate of brain abnormal activity during the states transitions in schizophrenia, and microstate B may represent a compensatory mechanism that maintains brain function and exchanges information with other brain regions. Microstate and brain network provide complementary perspectives on the neurodynamics, offering potential insights into brain function in health and disease.
Collapse
Affiliation(s)
- Rong Yao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Meirong Song
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Langhua Shi
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Yan Pei
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Haifang Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China;
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| |
Collapse
|
3
|
Ingolfsson TM, Benatti S, Wang X, Bernini A, Ducouret P, Ryvlin P, Beniczky S, Benini L, Cossettini A. Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers. Sci Rep 2024; 14:2980. [PMID: 38316856 PMCID: PMC10844293 DOI: 10.1038/s41598-024-52551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Electroencephalography (EEG) is widely used to monitor epileptic seizures, and standard clinical practice consists of monitoring patients in dedicated epilepsy monitoring units via video surveillance and cumbersome EEG caps. Such a setting is not compatible with long-term tracking under typical living conditions, thereby motivating the development of unobtrusive wearable solutions. However, wearable EEG devices present the challenges of fewer channels, restricted computational capabilities, and lower signal-to-noise ratio. Moreover, artifacts presenting morphological similarities to seizures act as major noise sources and can be misinterpreted as seizures. This paper presents a combined seizure and artifacts detection framework targeting wearable EEG devices based on Gradient Boosted Trees. The seizure detector achieves nearly zero false alarms with average sensitivity values of [Formula: see text] for 182 seizures from the CHB-MIT dataset and [Formula: see text] for 25 seizures from the private dataset with no preliminary artifact detection or removal. The artifact detector achieves a state-of-the-art accuracy of [Formula: see text] (on the TUH-EEG Artifact Corpus dataset). Integrating artifact and seizure detection significantly reduces false alarms-up to [Formula: see text] compared to standalone seizure detection. Optimized for a Parallel Ultra-Low Power platform, these algorithms enable extended monitoring with a battery lifespan reaching 300 h. These findings highlight the benefits of integrating artifact detection in wearable epilepsy monitoring devices to limit the number of false positives.
Collapse
Affiliation(s)
| | - Simone Benatti
- University of Bologna, 40126, Bologna, Italy
- University of Modena and Reggio Emilia, 41121, Reggio Emilia, Italy
| | | | - Adriano Bernini
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Pauline Ducouret
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Philippe Ryvlin
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Sandor Beniczky
- Aarhus University Hospital, 8200, Aarhus, Denmark
- Danish Epilepsy Centre (Filadelfia), 4293, Dianalund, Denmark
| | - Luca Benini
- ETH Zürich, D-ITET, 8092, Zürich, Switzerland
- University of Bologna, 40126, Bologna, Italy
| | | |
Collapse
|
4
|
Mahgoub A, Qaraqe M. Automatic detection of ictal activity in EEG using synchronization and chaos-based attributes. Med Biol Eng Comput 2023; 61:3387-3396. [PMID: 37673851 PMCID: PMC10746768 DOI: 10.1007/s11517-023-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Automatic seizure onset detectors (SODs) have been proposed to alert epileptic patients when a seizure is about to happen and in turn improve their quality of life. Yet, the detectors proposed in literature are complex and difficult to implement in real-time as they utilize large feature sets with redundant and irrelevant features. Hence, the aim of this work is to propose a simple and lightweight SOD that exploits two characteristics that reflect the neuronal behavior during a seizure. Namely, the synchronization between EEG channels and the chaoticity of the EEG; synchronization was measured by the condition number while the recurrence period density entropy estimated the chaoticity of an EEG signal. A support vector machine was trained and tested on 10 patients from a scalp EEG dataset and was able to detect the considered seizures with a sensitivity of 100% and a false positives rate of 0.5 per hour. The results indicate that synchronization and chaos attributes can reflect the manifestation of seizures in EEG data and can be used to develop SODs. This work emphasizes that even a single relevant feature can produce an SOD with comparable performance to SODs that use many features.
Collapse
Affiliation(s)
- Asma Mahgoub
- Hamad Bin Khalifa University, Doha, Qatar.
- Qatar University, Doha, Qatar.
| | | |
Collapse
|
5
|
Eqlimi E, Bockstael A, Schönwiesner M, Talsma D, Botteldooren D. Time course of EEG complexity reflects attentional engagement during listening to speech in noise. Eur J Neurosci 2023; 58:4043-4069. [PMID: 37814423 DOI: 10.1111/ejn.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Auditory distractions are recognized to considerably challenge the quality of information encoding during speech comprehension. This study explores electroencephalography (EEG) microstate dynamics in ecologically valid, noisy settings, aiming to uncover how these auditory distractions influence the process of information encoding during speech comprehension. We examined three listening scenarios: (1) speech perception with background noise (LA), (2) focused attention on the background noise (BA), and (3) intentional disregard of the background noise (BUA). Our findings showed that microstate complexity and unpredictability increased when attention was directed towards speech compared with tasks without speech (LA > BA & BUA). Notably, the time elapsed between the recurrence of microstates increased significantly in LA compared with both BA and BUA. This suggests that coping with background noise during speech comprehension demands more sustained cognitive effort. Additionally, a two-stage time course for both microstate complexity and alpha-to-theta power ratio was observed. Specifically, in the early epochs, a lower level was observed, which gradually increased and eventually reached a steady level in the later epochs. The findings suggest that the initial stage is primarily driven by sensory processes and information gathering, while the second stage involves higher level cognitive engagement, including mnemonic binding and memory encoding.
Collapse
Affiliation(s)
- Ehsan Eqlimi
- WAVES Research Group, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Annelies Bockstael
- WAVES Research Group, Department of Information Technology, Ghent University, Ghent, Belgium
| | | | - Durk Talsma
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Dick Botteldooren
- WAVES Research Group, Department of Information Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Jiang X, Liu X, Liu Y, Wang Q, Li B, Zhang L. Epileptic seizures detection and the analysis of optimal seizure prediction horizon based on frequency and phase analysis. Front Neurosci 2023; 17:1191683. [PMID: 37260846 PMCID: PMC10228742 DOI: 10.3389/fnins.2023.1191683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 06/02/2023] Open
Abstract
Changes in the frequency composition of the human electroencephalogram are associated with the transitions to epileptic seizures. Cross-frequency coupling (CFC) is a measure of neural oscillations in different frequency bands and brain areas, and specifically phase-amplitude coupling (PAC), a form of CFC, can be used to characterize these dynamic transitions. In this study, we propose a method for seizure detection and prediction based on frequency domain analysis and PAC combined with machine learning. We analyzed two databases, the Siena Scalp EEG database and the CHB-MIT database, and used the frequency features and modulation index (MI) for time-dependent quantification. The extracted features were fed to a random forest classifier for classification and prediction. The seizure prediction horizon (SPH) was also analyzed based on the highest-performing band to maximize the time for intervention and treatment while ensuring the accuracy of the prediction. Under comprehensive consideration, the results demonstrate that better performance could be achieved at an interval length of 5 min with an average accuracy of 85.71% and 95.87% for the Siena Scalp EEG database and the CHB-MIT database, respectively. As for the adult database, the combination of PAC analysis and classification can be of significant help for seizure detection and prediction. It suggests that the rarely used SPH also has a major impact on seizure detection and prediction and further explorations for the application of PAC are needed.
Collapse
Affiliation(s)
- Ximiao Jiang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaotong Liu
- Department of Dynamics and Control, Beihang University, Beijing, China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
| | - Bao Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Liyuan Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
7
|
Yadav H, Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-45. [PMID: 37362726 PMCID: PMC10157593 DOI: 10.1007/s11042-023-15653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/17/2022] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for researchers and scientists. It is a suitable combination of software and hardware to operate any device mentally. This review emphasizes the significant stages in the BCI domain, current problems, and state-of-the-art findings. This article also covers how current results can contribute to new knowledge about BCI, an overview of BCI from its early developments to recent advancements, BCI applications, challenges, and future directions. The authors pointed to unresolved issues and expressed how BCI is valuable for analyzing the human brain. Humans' dependence on machines has led humankind into a new future where BCI can play an essential role in improving this modern world.
Collapse
Affiliation(s)
- Hitesh Yadav
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| | - Surita Maini
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| |
Collapse
|
8
|
Tang Y, Chen D, Wu J, Tu W, Monaghan JJM, Sowman P, Mcalpine D. Functional connectivity learning via Siamese-based SPD matrix representation of brain imaging data. Neural Netw 2023; 163:272-285. [PMID: 37086544 DOI: 10.1016/j.neunet.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Measurement of brain functional connectivity has become a dominant approach to explore the interaction dynamics between brain regions of subjects under examination. Conventional functional connectivity measures largely originate from deterministic models on empirical analysis, usually demanding application-specific settings (e.g., Pearson's Correlation and Mutual Information). To bridge the technical gap, this study proposes a Siamese-based Symmetric Positive Definite (SPD) Matrix Representation framework (SiameseSPD-MR) to derive the functional connectivity of brain imaging data (BID) such as Electroencephalography (EEG), thus the alternative application-independent measure (in the form of SPD matrix) can be automatically learnt: (1) SiameseSPD-MR first exploits graph convolution to extract the representative features of BID with the adjacency matrix computed considering the anatomical structure; (2) Adaptive Gaussian kernel function then applies to obtain the functional connectivity representations from the deep features followed by SPD matrix transformation to address the intrinsic functional characteristics; and (3) Two-branch (Siamese) networks are combined via an element-wise product followed by a dense layer to derive the similarity between the pairwise inputs. Experimental results on two EEG datasets (autism spectrum disorder, emotion) indicate that (1) SiameseSPD-MR can capture more significant differences in functional connectivity between neural states than the state-of-the-art counterparts do, and these findings properly highlight the typical EEG characteristics of ASD subjects, and (2) the obtained functional connectivity representations conforming to the proposed measure can act as meaningful markers for brain network analysis and ASD discrimination.
Collapse
Affiliation(s)
- Yunbo Tang
- School of Computer Science, Wuhan University, Wuhan, China
| | - Dan Chen
- School of Computer Science, Wuhan University, Wuhan, China.
| | - Jia Wu
- School of Computing, Macquarie University, Sydney, Australia
| | - Weiping Tu
- School of Computer Science, Wuhan University, Wuhan, China
| | | | - Paul Sowman
- School of Computing, Macquarie University, Sydney, Australia
| | - David Mcalpine
- School of Computing, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Real-time epilepsy seizure detection based on EEG using tunable-Q wavelet transform and convolutional neural network. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Zhu S, Hosni SI, Huang X, Wan M, Borgheai SB, McLinden J, Shahriari Y, Ostadabbas S. A dynamical graph-based feature extraction approach to enhance mental task classification in brain-computer interfaces. Comput Biol Med 2023; 153:106498. [PMID: 36634598 DOI: 10.1016/j.compbiomed.2022.106498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Graph theoretic approaches in analyzing spatiotemporal dynamics of brain activities are under-studied but could be very promising directions in developing effective brain-computer interfaces (BCIs). Many existing BCI systems use electroencephalogram (EEG) signals to record and decode human neural activities noninvasively. Often, however, the features extracted from the EEG signals ignore the topological information hidden in the EEG temporal dynamics. Moreover, existing graph theoretic approaches are mostly used to reveal the topological patterns of brain functional networks based on synchronization between signals from distinctive spatial regions, instead of interdependence between states at different timestamps. In this study, we present a robust fold-wise hyperparameter optimization framework utilizing a series of conventional graph-based measurements combined with spectral graph features and investigate its discriminative performance on classification of a designed mental task in 6 participants with amyotrophic lateral sclerosis (ALS). Across all of our participants, we reached an average accuracy of 71.1%±4.5% for mental task classification by combining the global graph-based measurements and the spectral graph features, higher than the conventional non-graph based feature performance (67.1%±7.5%). Compared to using either one of the graphic features (66.3%±6.5% for the eigenvalues and 65.9%±5.2% for the global graph features), our feature combination strategy shows considerable improvement in both accuracy and robustness performance. Our results indicate the feasibility and advantage of the presented fold-wise optimization framework utilizing graph-based features in BCI systems targeted at end-users.
Collapse
Affiliation(s)
- Shaotong Zhu
- The Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Sarah Ismail Hosni
- The Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Xiaofei Huang
- The Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Michael Wan
- The Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Seyyed Bahram Borgheai
- The Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI 02881, USA
| | - John McLinden
- The Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Yalda Shahriari
- The Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Sarah Ostadabbas
- The Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
11
|
An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Sharma R, Arora C, Rehalia A, Bhardwaj A. Fruitfly optimizer with deep neural network for the detection of brain tumours using EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2036352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ruchi Sharma
- Department of Electronics and Communication Engineering, Bharati Vidyapeeth College of Engineering, Delhi, India
| | - Charu Arora
- Department of Applied Sciences, Bharati Vidyapeeth College of Engineering, Delhi, India
| | - Arvind Rehalia
- Department of Information Technology, Bharati Vidyapeeth College of Engineering, Delhi, India
| | - Anil Bhardwaj
- Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
13
|
Enhanced Feature Extraction-based CNN Approach for Epileptic Seizure Detection from EEG Signals. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3491828. [PMID: 35340257 PMCID: PMC8942662 DOI: 10.1155/2022/3491828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 11/18/2022]
Abstract
One of the most common neurological disorders is epilepsy, which disturbs the nerve cell activity in the brain, causing seizures. Electroencephalography (EEG) signals are used to detect epilepsy and are considered standard techniques to diagnose epilepsy conditions. EEG monitors and records the brain activity of epilepsy patients, and these recordings are used in the diagnosis of epilepsy. However, extracting the information from the EEG recordings manually for detecting epileptic seizures is a difficult cumbersome, error-prone, and labor-intensive task. These negative attributes of the manual process increase the demand for implementing an automated model for the seizure detection process, which can classify seizure and nonseizures from EEG signals to help in the timely identification of epilepsy. Recently, deep learning (DL) and machine learning (ML) techniques have been used in the automatic detection of epileptic seizures because of their superior classification abilities. ML and DL algorithms can accurately classify different seizure conditions from large-scale EEG data and provide appropriate results for neurologists. This work presents a feature extraction-based convolutional neural network (CNN) to sense and classify different types of epileptic seizures from EEG signals. Different features are analyzed to classify seizures via EEG signals. Simulation analysis was managed to investigate the classification performance of the hybrid CNN-RNN model in terms of different achievement metrics such as accuracy, precision, recall, f1 score, and false-positive rate. The results validate the efficacy of the CNN-RNN model for seizure detection.
Collapse
|
14
|
Xu J, Wang M, Zhang J, Chen Z, Huang W, Shen G, Zhang M. Network theory based EHG signal analysis and its application in preterm prediction. IEEE J Biomed Health Inform 2022; 26:2876-2887. [PMID: 34986107 DOI: 10.1109/jbhi.2022.3140427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Preterm birth is the leading cause of neonatal morbidity and mortality. Early identification of high-risk patients followed by medical interventions is essential to the prevention of preterm birth. Based on the relationship between uterine contraction and the fundamental electrical activities of muscles, we extracted effective features from EHG signals recorded from pregnant women, and use them to train classifiers with the purpose of providing high precision in classifying term and preterm pregnancies. METHODS To characterize changes from irregularity to coherence of the uterine activity during the whole pregnancy, network representations of the original electrohysterogram (EHG) signals are established by applying the Horizontal Visibility Graph (HVG) algorithm, from which we extract network degree density and distribution, clustering coefficient and assortativity coefficient. Concerns on the interferences of different noise sources embedded in the EHG signal, we apply Short-Time Fourier Transform (STFT) to expand the original signal in the time-frequency domain. This allows a network representation and the extraction of related features on each frequency component. Feature selection algorithms are then used to filter out unrelated frequency components. We further apply the proposed feature extraction method to EHG signals available in the Term-Preterm EHG database (TPEHG), and use them to train classifiers. We adopt the Partition-Synthesis scheme which splits the original imbalanced dataset into two sets and synthesizes artificial samples separately within each subset to solve the problem of dataset imbalance. RESULTS The optimally selected network-based features, not only contribute to the identification of the essential frequency components of uterine activities related to preterm birth, but also to improved performance in classifying term/preterm pregnancies, i.e., the SVM (Support Vector Machine) classifier trained with the available samples in the TPEHG gives sensitivity, specificity, overall accuracy, and auc values as high as 0.89, 0.93, 0.91, and 0.97, respectively.
Collapse
|
15
|
Yao R, Xue J, Li H, Wang Q, Deng H, Tan S. Dynamics and synchronization control in schizophrenia for EEG signals. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gu H, Chou CA. Optimizing non-uniform multivariate embedding for multiscale entropy analysis of complex systems. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Zhu S, Hosni SI, Huang X, Borgheai SB, McLinden J, Shahriari Y, Ostadabbas S. A Graph-Based Feature Extraction Algorithm Towards a Robust Data Fusion Framework for Brain-Computer Interfaces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:878-881. [PMID: 34891430 DOI: 10.1109/embc46164.2021.9630804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The topological information hidden in the EEG spectral dynamics is often ignored in the majority of the existing brain-computer interface (BCI) systems. Moreover, a systematic multimodal fusion of EEG with other informative brain signals such as functional near-infrared spectroscopy (fNIRS) towards enhancing the performance of the BCI systems is not fully investigated. In this study, we present a robust EEG-fNIRS data fusion framework utilizing a series of graph-based EEG features to investigate their performance on a motor imaginary (MI) classification task. METHOD We first extract the amplitude and phase sequences of users' multi-channel EEG signals based on the complex Morlet wavelet time-frequency maps, and then convert them into an undirected graph to extract EEG topological features. The graph-based features from EEG are then selected by a thresholding method and fused with the temporal features from fNIRS signals after each being selected by the least absolute shrinkage and selection operator (LASSO) algorithm. The fused features were then classified as MI task vs. baseline by a linear support vector machine (SVM) classifier. RESULTS The time-frequency graphs of EEG signals improved the MI classification accuracy by ∼5% compared to the graphs built on the band-pass filtered temporal EEG signals. Our proposed graph-based method also showed comparable performance to the classical EEG features based on power spectral density (PSD), however with a much smaller standard deviation, showing its robustness for potential use in a practical BCI system. Our fusion analysis revealed a considerable improvement of ∼17% as opposed to the highest average accuracy of EEG only and ∼3% compared with the highest fNIRS only accuracy demonstrating an enhanced performance when modality fusion is used relative to single modal outcomes. SIGNIFICANCE Our findings indicate the potential use of the proposed data fusion framework utilizing the graph-based features in the hybrid BCI systems by making the motor imaginary inference more accurate and more robust.
Collapse
|
18
|
Gu H, Chou CA. Detecting Epileptic Seizures via Non-Uniform Multivariate Embedding of EEG Signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1690-1693. [PMID: 34891611 DOI: 10.1109/embc46164.2021.9630130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient real-time detection of epileptic seizures remains a challenging task in clinical practice. In this study, we introduce a new thresholding method to monitor brain activities via a non-uniform multivariate (NUM) embedding of multi-channel electroencephalogram (EEG) signals. Specifically, we present a NUM embedding optimization problem to identify the best embedding parameters. We originate one feature, named non-uniform multivariate multiscale entropy (NUMME), which is extracted from the NUM embedded EEG data. Finally, the extracted feature, compared to an individualized threshold, is used for monitoring and detecting seizure onsets. Experimental results on the real CHB-MIT Scalp EEG database show that our approach achieves a comparable performance to the state-of-art methods. Moreover, it is important to note that we accomplish this without using any sophisticated machine learning algorithms.
Collapse
|
19
|
Prasanna J, Subathra MSP, Mohammed MA, Damaševičius R, Sairamya NJ, George ST. Automated Epileptic Seizure Detection in Pediatric Subjects of CHB-MIT EEG Database-A Survey. J Pers Med 2021; 11:1028. [PMID: 34683169 PMCID: PMC8537151 DOI: 10.3390/jpm11101028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children's Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed.
Collapse
Affiliation(s)
- J. Prasanna
- Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; (J.P.); (N.J.S.)
| | - M. S. P. Subathra
- Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India;
| | - Mazin Abed Mohammed
- Information Systems Department, College of Computer Science and Information Technology, University of Anbar, Ramadi 31000, Anbar, Iraq;
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Nanjappan Jothiraj Sairamya
- Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; (J.P.); (N.J.S.)
| | - S. Thomas George
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| |
Collapse
|
20
|
Yan Y, Zhao A, Ying W, Qiu Y, Ding Y, Wang Y, Xu W, Deng Y. Functional Connectivity Alterations Based on the Weighted Phase Lag Index: An Exploratory Electroencephalography Study on Alzheimer's Disease. Curr Alzheimer Res 2021; 18:513-522. [PMID: 34598666 DOI: 10.2174/1567205018666211001110824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/24/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Numerous electroencephalography (EEG) studies focus on the alteration of electrical activity in patients with Alzheimer's Disease (AD), but there are no consistent results especially regarding functional connectivity. We supposed that the weighted Phase Lag Index (w- PLI), as phase-based measures of functional connectivity, may be used as an auxiliary diagnostic method for AD. METHODS We enrolled 30 patients with AD, 30 patients with Mild Cognitive Impairment (MCI), and 30 Healthy Controls (HC). EEGs were recorded in all participants at baseline during relaxed wakefulness. Following EEG preprocessing, Power Spectral Density (PSD) and wPLI parameters were determined to further analyze whether they were correlated to cognitive scores. RESULTS In the patients with AD, the increased PSD in theta band was presented compared with MCI and HC groups, which was associated with disturbances of the directional, computational, and delayed memory capacity. Furthermore, the wPLI revealed a distinctly lower connection strength between frontal and distant areas in the delta band and a higher connection strength of the central and temporo-occipital region in the theta band for AD patients. Moreover,we found a significant negative correlation between theta functional connectivity and cognitive scores. CONCLUSION Increased theta PSD and decreased delta wPLI may be one of the earliest changes in AD and associated with disease severity. The parameter wPLI is a novel measurement of phase synchronization and has potentials in understanding underlying functional connectivity and aiding in the diagnostics of AD.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weina Ying
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Ding
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Annaby M, Said M, Eldeib A, Rushdi M. EEG-based motor imagery classification using digraph Fourier transforms and extreme learning machines. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Qian S, Chou CA. A Koopman-operator-theoretical approach for anomaly recognition and detection of multi-variate EEG system. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Yao X, Li X, Ye Q, Huang Y, Cheng Q, Zhang GQ. A robust deep learning approach for automatic classification of seizures against non-seizures. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Cross-sample entropy for the study of coordinated brain activity in calm and distress conditions with electroencephalographic recordings. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05694-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Sharp decrease in the Laplacian matrix rank of phase-space graphs: a potential biomarker in epilepsy. Cogn Neurodyn 2021; 15:649-659. [PMID: 34367366 DOI: 10.1007/s11571-020-09662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022] Open
Abstract
In this paper, phase space reconstruction from stereo-electroencephalography data of ten patients with focal epilepsy forms a series of graphs. Those obtained graphs reflect the transition characteristics of brain dynamical system from pre-seizure to seizure of epilepsy. Interestingly, it is found that the rank of Laplacian matrix of these graphs has a sharp decrease when a seizure is close to happen, which thus might be viewed as a new potential biomarker in epilepsy. In addition, the reliability of this method is numerically verified with a coupled mass neural model. In particular, our simulation suggests that this potential biomarker can play the roles of predictive effect or delayed awareness, depending on the bias current of the Gaussian noise. These results may give new insights into the seizure detection.
Collapse
|
26
|
EEG Synchronization Analysis for Seizure Prediction: A Study on Data of Noninvasive Recordings. Processes (Basel) 2020. [DOI: 10.3390/pr8070846] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Epilepsy is a neurological disorder arising from anomalies of the electrical activity in the brain, affecting ~65 million individuals worldwide. Prediction methods, typically based on machine learning methods, require a large amount of data for training, in order to correctly classify seizures with small false alarm rates. Methods: In this work, we present a new database containing EEG scalp signals of 14 epileptic patients acquired at the Unit of Neurology and Neurophysiology of the University of Siena, Italy. Furthermore, a patient-specific seizure prediction method, based on the detection of synchronization patterns in the EEG, is proposed and tested on the data of the database. The use of noninvasive EEG data aims to explore the possibility of developing a noninvasive monitoring/control device for the prediction of seizures. The prediction method employs synchronization measures computed over all channel pairs and a computationally inexpensive threshold-based classification approach. Results and conclusions: The experimental analysis, performed by inspection and by the proposed threshold-based classifier on all the patients of the database, shows that the features extracted by the synchronization measures are able to detect preictal and ictal states and allow the prediction of the seizures few minutes before the seizure onsets.
Collapse
|
27
|
Automated detection of dynamical change in EEG signals based on a new rhythm measure. Artif Intell Med 2020; 107:101920. [DOI: 10.1016/j.artmed.2020.101920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
|
28
|
Real-time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures. Sci Rep 2020; 10:8653. [PMID: 32457378 PMCID: PMC7251100 DOI: 10.1038/s41598-020-65401-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies in brain science and neurological medicine paid a particular attention to develop machine learning-based techniques for the detection and prediction of epileptic seizures with electroencephalogram (EEG). As a noninvasive monitoring method to record brain electrical activities, EEG has been widely used for capturing the underlying dynamics of disruptive neuronal responses across the brain in real-time to provide clinical guidance in support of epileptic seizure treatments in practice. In this study, we introduce a novel dynamic learning method that first infers a time-varying network constituted by multivariate EEG signals, which represents the overall dynamics of the brain network, and subsequently quantifies its topological property using graph theory. We demonstrate the efficacy of our learning method to detect relatively strong synchronization (characterized by the algebraic connectivity metric) caused by abnormal neuronal firing during a seizure onset. The computational results for a realistic scalp EEG database show a detection rate of 93.6% and a false positive rate of 0.16 per hour (FP/h); furthermore, our method observes potential pre-seizure phenomena in some cases.
Collapse
|
29
|
Cai L, Wei X, Liu J, Zhu L, Wang J, Deng B, Yu H, Wang R. Functional Integration and Segregation in Multiplex Brain Networks for Alzheimer's Disease. Front Neurosci 2020; 14:51. [PMID: 32132892 PMCID: PMC7040198 DOI: 10.3389/fnins.2020.00051] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
Growing evidence links impairment of brain functions in Alzheimer's disease (AD) with disruptions of brain functional connectivity. However, whether the AD brain shows similar changes from a dynamic or cross-frequency view remains poorly explored. This paper provides an effective framework to investigate the properties of multiplex brain networks in AD considering inter-frequency and temporal dynamics. Using resting-state EEG signals, two types of multiplex networks were reconstructed separately considering the network interactions between different frequency bands or time points. We further applied multiplex network features to characterize functional integration and segregation of the cross-frequency or time-varying networks. Finally, machine learning methods were employed to evaluate the performance of multiplex-network-based indexes for detection of AD. Results revealed that the brain networks of AD patients are disrupted with reduced segregation particularly in the left occipital area for both cross-frequency and time-varying networks. However, the alteration of integration differs among brain regions and may show an increasing trend in the frontal area of AD brain. By combining the features of integration and segregation in time-varying networks, the best classification performance was achieved with an accuracy of 92.5%. These findings suggest that our multiplex framework can be applied to explore functional integration and segregation of brain networks and characterize the abnormalities of brain function. This may shed new light on the brain network analysis and extend our understanding of brain function in patients with neurological diseases.
Collapse
Affiliation(s)
- Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jing Liu
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Lin Zhu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Haitao Yu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| |
Collapse
|
30
|
Zhang X, Yao L, Dong M, Liu Z, Zhang Y, Li Y. Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection. IEEE J Biomed Health Inform 2020; 24:2852-2859. [PMID: 32071011 DOI: 10.1109/jbhi.2020.2971610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epilepsy is a chronic neurological disorder characterized by the occurrence of spontaneous seizures, which affects about one percent of the worlds population. Most of the current seizure detection approaches strongly rely on patient history records and thus fail in the patient-independent situation of detecting the new patients. To overcome such limitation, we propose a robust and explainable epileptic seizure detection model that effectively learns from seizure states while eliminates the inter-patient noises. A complex deep neural network model is proposed to learn the pure seizure-specific representation from the raw non-invasive electroencephalography (EEG) signals through adversarial training. Furthermore, to enhance the explainability, we develop an attention mechanism to automatically learn the importance of each EEG channels in the seizure diagnosis procedure. The proposed approach is evaluated over the Temple University Hospital EEG (TUH EEG) database. The experimental results illustrate that our model outperforms the competitive state-of-the-art baselines with low latency. Moreover, the designed attention mechanism is demonstrated ables to provide fine-grained information for pathological analysis. We propose an effective and efficient patient-independent diagnosis approach of epileptic seizure based on raw EEG signals without manually feature engineering, which is a step toward the development of large-scale deployment for real-life use.
Collapse
|
31
|
Sharma R, Chopra K. EEG-based epileptic seizure detection using GPLV model and multi support vector machine. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2020. [DOI: 10.1080/02522667.2020.1715564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ruchi Sharma
- Departartment of Electrical and Electronics Engineering, GD Goenka University, Gurugram 122103, Haryana, India
| | - Khyati Chopra
- Departartment of Electrical and Electronics Engineering, GD Goenka University, Gurugram 122103, Haryana, India,
| |
Collapse
|