1
|
Chen S, Ouyang Q, Meng X, Yang Y, Li C, Miao X, Chen Z, Zhao G, Lei Y, Ghanem B, Gautam S, Cheng J, Yan Z. Starfish-inspired wearable bioelectronic systems for physiological signal monitoring during motion and real-time heart disease diagnosis. SCIENCE ADVANCES 2025; 11:eadv2406. [PMID: 40173233 PMCID: PMC11963991 DOI: 10.1126/sciadv.adv2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Soft bioelectronics enable noninvasive, continuous monitoring of physiological signals, essential for precision health care. However, capturing biosignals during physical activity, particularly biomechanical signals like cardiac mechanics, remains challenging due to motion-induced interference. Inspired by starfish's pentaradial symmetry, we introduce a starfish-like wearable bioelectronic system designed for high-fidelity signal monitoring during movement. The device, featuring five flexible, free-standing sensing arms connected to a central electronic hub, substantially reduces mechanical interference and enables high-fidelity acquisition of cardiac electrical (electrocardiogram) and mechanical (seismocardiogram and gyrocardiogram) signals during motion when coupled with signal compensation and machine learning. Using these three cardiac signal types as inputs, machine learning models deployed on smart devices achieve real-time, high-accuracy (more than 91%) diagnoses of heart conditions such as atrial fibrillation, myocardial infarction, and heart failure. These findings open previously undiscovered avenues by leveraging bioinspired device concepts combined with cutting-edge data science to boost bioelectronic performance and diagnostic precision.
Collapse
Affiliation(s)
- Sicheng Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Qunle Ouyang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yibo Yang
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Can Li
- DoorDash Inc., San Francisco, CA, USA
| | - Xuanbo Miao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Yaguo Lei
- Mechanical Engineering College, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bernard Ghanem
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Sandeep Gautam
- Division of Cardiovascular Medicine, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Bhattacharya S, Santucci F, Jankovic M, Huang T, Basu J, Tan P, Schena E, Lu N. Cardiac Time Intervals Under Motion Using Bimodal Chest E-Tattoos and Multistage Processing. IEEE Trans Biomed Eng 2025; 72:413-424. [PMID: 39255080 DOI: 10.1109/tbme.2024.3454067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
GOAL We present a wireless, lightweight, stretchable, and chest-conformable sensor, known as the chest e-tattoo, coupled with an advanced signal processing framework to accurately identify various cardiac events, and thereby extract cardiac time intervals (CTIs) even during body motion. METHODS We developed a wireless chest e-tattoo featuring synchronous electrocardiography (ECG) and seismocardiography (SCG), with SCG capturing chest vibrations to complement ECG. Motion artifacts often compromise the efficacy of SCG, but the e-tattoo's slim, stretchy design allows strategic placement near the xiphoid process for improved signal quality. Nine participants were monitored during walking and cycling. To accurately extract CTIs, we implemented a multistage signal processing framework, named the FAD framework, combining adaptive Normalized Least Mean Squares (NMLS) filtering, ensemble averaging, and Empirical Mode Decomposition (EMD). RESULTS Key CTIs, especially left ventricular ejection time (LVET), were successfully extracted by our hardware-software system and showed strong agreement with those reported by an FDA-cleared bedside monitor even during substantial movements. The pre-ejection period (PEP) measured by the e-tattoo also aligned with previous findings. CONCLUSION The bimodal chest e-tattoo combined with the FAD framework enables reliable CTI measurements during various activities. SIGNIFICANCE Managing cardiovascular disease at home necessitates continuous monitoring, which has been challenging with wearables due to signal sensitivity to motion. Accurately extracting cardiac events from synchronous SCG and ECG during motion can significantly enhance heart stress response quantification, offering a more comprehensive cardiac health assessment than ECG alone and marking a significant advancement in ambulatory cardiovascular monitoring capabilities.
Collapse
|
3
|
Skoric J, D’Mello Y, Plant DV. A Wavelet-Based Approach for Motion Artifact Reduction in Ambulatory Seismocardiography. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:348-358. [PMID: 38606390 PMCID: PMC11008810 DOI: 10.1109/jtehm.2024.3368291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 04/13/2024]
Abstract
Wearable sensing has become a vital approach to cardiac health monitoring, and seismocardiography (SCG) is emerging as a promising technology in this field. However, the applicability of SCG is hindered by motion artifacts, including those encountered in practice of which the strongest source is walking. This holds back the translation of SCG to clinical settings. We therefore investigated techniques to enhance the quality of SCG signals in the presence of motion artifacts. To simulate ambulant recordings, we corrupted a clean SCG dataset with real-walking-vibrational noise. We decomposed the signal using several empirical-mode-decomposition methods and the maximum overlap discrete wavelet transform (MODWT). By combining MODWT, time-frequency masking, and nonnegative matrix factorization, we developed a novel algorithm which leveraged the vertical axis accelerometer to reduce walking vibrations in dorsoventral SCG. The accuracy and applicability of our method was verified using heart rate estimation. We used an interactive selection approach to improve estimation accuracy. The best decomposition method for reduction of motion artifact noise was the MODWT. Our algorithm improved heart rate estimation from 0.1 to 0.8 r-squared at -15 dB signal-to-noise ratio (SNR). Our method reduces motion artifacts in SCG signals up to a SNR of -19 dB without requiring any external assistance from electrocardiography (ECG). Such a standalone solution is directly applicable to the usage of SCG in daily life, as a content-rich replacement for other wearables in clinical settings, and other continuous monitoring scenarios. In applications with higher noise levels, ECG may be incorporated to further enhance SCG and extend its usable range. This work addresses the challenges posed by motion artifacts, enabling SCG to offer reliable cardiovascular insights in more difficult scenarios, and thereby facilitating wearable monitoring in daily life and the clinic.
Collapse
Affiliation(s)
- James Skoric
- Department of Electrical and Computer EngineeringMcGill UniversityMontrealQCH3A 0E9Canada
| | - Yannick D’Mello
- Department of Electrical and Computer EngineeringMcGill UniversityMontrealQCH3A 0E9Canada
| | - David V. Plant
- Department of Electrical and Computer EngineeringMcGill UniversityMontrealQCH3A 0E9Canada
| |
Collapse
|
4
|
Qi Y, Zhang A, Ma Y, Wang H, Li J. Interference source-based quality assessment method for postauricular photoplethysmography signals. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Lorenz G. [Diagnostic predictive value of liver biopsy for clinical aspects]. ZEITSCHRIFT FUR ARZTLICHE FORTBILDUNG 2022; 72:793-6. [PMID: 362741 PMCID: PMC9736764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The quest for improved diagnosis and treatment in home health care models has led to the development of wearable medical devices for remote vital signs monitoring. An accurate signal and a high diagnostic yield are critical for the cost-effectiveness of wearable health care monitoring systems and their widespread application in resource-constrained environments. Despite technological advances, the information acquired by these devices can be contaminated by motion artifacts (MA) leading to misdiagnosis or repeated procedures with increases in associated costs. This makes it necessary to develop methods to improve the quality of the signal acquired by these devices. Objective We aimed to present a novel method for electrocardiogram (ECG) signal denoising to reduce MA. We aimed to analyze the method’s performance and to compare its performance to that of existing approaches. Methods We present the novel Redundant denoising Independent Component Analysis method for ECG signal denoising based on the redundant and simultaneous acquisition of ECG signals and movement information, multichannel processing, and performance assessment considering the information contained in the signal waveform. The method is based on data including ECG signals from the patient’s chest and back, the acquisition of triaxial movement signals from inertial measurement units, a reference signal synthesized from an autoregressive model, and the separation of interest and noise sources through multichannel independent component analysis. Results The proposed method significantly reduced MA, showing better performance and introducing a smaller distortion in the interest signal compared with other methods. Finally, the performance of the proposed method was compared to that of wavelet shrinkage and wavelet independent component analysis through the assessment of signal-to-noise ratio, dynamic time warping, and a proposed index based on the signal waveform evaluation with an ensemble average ECG. Conclusions Our novel ECG denoising method is a contribution to converting wearable devices into medical monitoring tools that can be used to support the remote diagnosis and monitoring of cardiovascular diseases. A more accurate signal substantially improves the diagnostic yield of wearable devices. A better yield improves the devices’ cost-effectiveness and contributes to their widespread application.
Collapse
|
6
|
Castaño Usuga FA, Gissel C, Hernández AM. Motion Artifact Reduction in Electrocardiogram Signals Through a Redundant Denoising Independent Component Analysis Method for Wearable Health Care Monitoring Systems: Algorithm Development and Validation. JMIR Med Inform 2022; 10:e40826. [PMID: 36274196 PMCID: PMC9736764 DOI: 10.2196/40826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Accepted: 10/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The quest for improved diagnosis and treatment in home health care models has led to the development of wearable medical devices for remote vital signs monitoring. An accurate signal and a high diagnostic yield are critical for the cost-effectiveness of wearable health care monitoring systems and their widespread application in resource-constrained environments. Despite technological advances, the information acquired by these devices can be contaminated by motion artifacts (MA) leading to misdiagnosis or repeated procedures with increases in associated costs. This makes it necessary to develop methods to improve the quality of the signal acquired by these devices. OBJECTIVE We aimed to present a novel method for electrocardiogram (ECG) signal denoising to reduce MA. We aimed to analyze the method's performance and to compare its performance to that of existing approaches. METHODS We present the novel Redundant denoising Independent Component Analysis method for ECG signal denoising based on the redundant and simultaneous acquisition of ECG signals and movement information, multichannel processing, and performance assessment considering the information contained in the signal waveform. The method is based on data including ECG signals from the patient's chest and back, the acquisition of triaxial movement signals from inertial measurement units, a reference signal synthesized from an autoregressive model, and the separation of interest and noise sources through multichannel independent component analysis. RESULTS The proposed method significantly reduced MA, showing better performance and introducing a smaller distortion in the interest signal compared with other methods. Finally, the performance of the proposed method was compared to that of wavelet shrinkage and wavelet independent component analysis through the assessment of signal-to-noise ratio, dynamic time warping, and a proposed index based on the signal waveform evaluation with an ensemble average ECG. CONCLUSIONS Our novel ECG denoising method is a contribution to converting wearable devices into medical monitoring tools that can be used to support the remote diagnosis and monitoring of cardiovascular diseases. A more accurate signal substantially improves the diagnostic yield of wearable devices. A better yield improves the devices' cost-effectiveness and contributes to their widespread application.
Collapse
Affiliation(s)
- Fabian Andres Castaño Usuga
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Department, Engineering Faculty, Universidad de Antioquia, Medellín, Colombia
| | - Christian Gissel
- Department of Health Economics, Justus Liebig University Giessen, Giessen, Germany
| | - Alher Mauricio Hernández
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Department, Engineering Faculty, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
7
|
Galli A, Montree RJH, Que S, Peri E, Vullings R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4035. [PMID: 35684656 PMCID: PMC9185322 DOI: 10.3390/s22114035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
This work presents an overview of the main strategies that have been proposed for non-invasive monitoring of heart rate (HR) in extramural and home settings. We discuss three categories of sensing according to what physiological effect is used to measure the pulsatile activity of the heart, and we focus on an illustrative sensing modality for each of them. Therefore, electrocardiography, photoplethysmography, and mechanocardiography are presented as illustrative modalities to sense electrical activity, mechanical activity, and the peripheral effect of heart activity. In this paper, we describe the physical principles underlying the three categories and the characteristics of the different types of sensors that belong to each class, and we touch upon the most used software strategies that are currently adopted to effectively and reliably extract HR. In addition, we investigate the strengths and weaknesses of each category linked to the different applications in order to provide the reader with guidelines for selecting the most suitable solution according to the requirements and constraints of the application.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Information Engineering, University of Padova, I-35131 Padova, Italy;
| | - Roel J. H. Montree
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Shuhao Que
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Elisabetta Peri
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Rik Vullings
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| |
Collapse
|
8
|
Wearable Sensors and Machine Learning for Hypovolemia Problems in Occupational, Military and Sports Medicine: Physiological Basis, Hardware and Algorithms. SENSORS 2022; 22:s22020442. [PMID: 35062401 PMCID: PMC8781307 DOI: 10.3390/s22020442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Hypovolemia is a physiological state of reduced blood volume that can exist as either (1) absolute hypovolemia because of a lower circulating blood (plasma) volume for a given vascular space (dehydration, hemorrhage) or (2) relative hypovolemia resulting from an expanded vascular space (vasodilation) for a given circulating blood volume (e.g., heat stress, hypoxia, sepsis). This paper examines the physiology of hypovolemia and its association with health and performance problems common to occupational, military and sports medicine. We discuss the maturation of individual-specific compensatory reserve or decompensation measures for future wearable sensor systems to effectively manage these hypovolemia problems. The paper then presents areas of future work to allow such technologies to translate from lab settings to use as decision aids for managing hypovolemia. We envision a future that incorporates elements of the compensatory reserve measure with advances in sensing technology and multiple modalities of cardiovascular sensing, additional contextual measures, and advanced noise reduction algorithms into a fully wearable system, creating a robust and physiologically sound approach to manage physical work, fatigue, safety and health issues associated with hypovolemia for workers, warfighters and athletes in austere conditions.
Collapse
|
9
|
Andreozzi E, Gargiulo GD, Esposito D, Bifulco P. A Novel Broadband Forcecardiography Sensor for Simultaneous Monitoring of Respiration, Infrasonic Cardiac Vibrations and Heart Sounds. Front Physiol 2021; 12:725716. [PMID: 34867438 PMCID: PMC8637282 DOI: 10.3389/fphys.2021.725716] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
The precordial mechanical vibrations generated by cardiac contractions have a rich frequency spectrum. While the lowest frequencies can be palpated, the higher infrasonic frequencies are usually captured by the seismocardiogram (SCG) signal and the audible ones correspond to heart sounds. Forcecardiography (FCG) is a non-invasive technique that measures these vibrations via force sensing resistors (FSR). This study presents a new piezoelectric sensor able to record all heart vibrations simultaneously, as well as a respiration signal. The new sensor was compared to the FSR-based one to assess its suitability for FCG. An electrocardiogram (ECG) lead and a signal from an electro-resistive respiration band (ERB) were synchronously acquired as references on six healthy volunteers (4 males, 2 females) at rest. The raw signals from the piezoelectric and the FSR-based sensors turned out to be very similar. The raw signals were divided into four components: Forcerespirogram (FRG), Low-Frequency FCG (LF-FCG), High-Frequency FCG (HF-FCG) and heart sounds (HS-FCG). A beat-by-beat comparison of FCG and ECG signals was carried out by means of regression, correlation and Bland–Altman analyses, and similarly for respiration signals (FRG and ERB). The results showed that the infrasonic FCG components are strongly related to the cardiac cycle (R2 > 0.999, null bias and Limits of Agreement (LoA) of ± 4.9 ms for HF-FCG; R2 > 0.99, null bias and LoA of ± 26.9 ms for LF-FCG) and the FRG inter-breath intervals are consistent with ERB ones (R2 > 0.99, non-significant bias and LoA of ± 0.46 s). Furthermore, the piezoelectric sensor was tested against an accelerometer and an electronic stethoscope: synchronous acquisitions were performed to quantify the similarity between the signals. ECG-triggered ensemble averages (synchronized with R-peaks) of HF-FCG and SCG showed a correlation greater than 0.81, while those of HS-FCG and PCG scored a correlation greater than 0.85. The piezoelectric sensor demonstrated superior performances as compared to the FSR, providing more accurate, beat-by-beat measurements. This is the first time that a single piezoelectric sensor demonstrated the ability to simultaneously capture respiration, heart sounds, an SCG-like signal (i.e., HF-FCG) and the LF-FCG signal, which may provide information on ventricular emptying and filling events. According to these preliminary results the novel piezoelectric FCG sensor stands as a promising device for accurate, unobtrusive, long-term monitoring of cardiorespiratory functions and paves the way for a wide range of potential applications, both in the research and clinical fields. However, these results should be confirmed by further analyses on a larger cohort of subjects, possibly including also pathological patients.
Collapse
Affiliation(s)
- Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Naples, Italy
| | - Gaetano D Gargiulo
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW, Australia
| | - Daniele Esposito
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Naples, Italy
| | - Paolo Bifulco
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
The Latest Progress and Development Trend in the Research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the Field of Health Care. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current status of the research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the field of medical treatment, health care and nursing was analyzed systematically, and the important direction in the research was explored, to provide reference for the relevant researches. This study, based on two large databases, CNKI and PubMed, used the bibliometric analysis method to review the existing documents in the past 20 years, and made analyses on the literature of BCG and SCG for their annual changes, main countries/regions, types of research, frequently-used subject words, and important research subjects. The results show that the developed countries have taken a leading position in the researches in this field, and have made breakthroughs in some subjects, but their research results have been mainly gained in the area of research and development of the technologies, and very few have been actually industrialized into commodities. This means that in the future the researchers should focus on the transformation of BCG and SCG technologies into commercialized products, and set up quantitative health assessment models, so as to become the daily tools for people to monitor their health status and manage their own health, and as the main approaches of improving the quality of life and preventing diseases for individuals.
Collapse
|
11
|
Lin DJ, Kimball JP, Zia J, Ganti VG, Inan OT. Reducing the Impact of External Vibrations on Fiducial Point Detection in Seismocardiogram Signals. IEEE Trans Biomed Eng 2021; 69:176-185. [PMID: 34161234 DOI: 10.1109/tbme.2021.3090376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Wearable systems that enable continuous non-invasive monitoring of hemodynamic parameters can aid in cardiac health evaluation in non-hospital settings. The seismocardiogram (SCG) is a non-invasively acquired cardiovascular biosignal for which timings of fiducial points, like aortic valve opening (AO) and aortic valve closing (AC), can enable estimation of key hemodynamic parameters. However, SCG is susceptible to motion artifacts, making accurate estimation of these points difficult when corrupted by high-g or in-band vibration artifacts. In this paper, a novel denoising pipeline is proposed that removes vehicle-vibration artifacts from corrupted SCG beats for accurate fiducial point detection. METHODS The noisy SCG signal is decomposed with ensemble empirical mode decomposition (EEMD). Corrupted segments of the decomposed signal are then identified and removed using the quasi-periodicity of the SCG. Signal quality assessment of the reconstructed SCG beats then removes unreliable beats before feature extraction. The overall approach is validated on simulated vehicle-corrupted SCG generated by adding real subway collected vibration signals onto clean SCG. RESULTS SNR increased by 8.1dB in the AO complex and 11.5dB in the AC complex of the SCG signal. Hemodynamic timing estimation errors reduced by 16.5\% for pre-ejection period (PEP), 67.2\% for left ventricular ejection time (LVET), and 57.7\% for PEP/LVET---a feature previously determined in prior work to be of great importance for assessing blood volume status during hemorrhage. CONCLUSION These findings suggest that usable SCG signals can be recovered from vehicle-corrupted SCG signals using the presented denoising framework, allowing for accurate hemodynamic timing estimation. SIGNIFICANCE Reliable hemodynamic estimates from vehicle-corrupted SCG signals will enable the adoption of the SCG in outside-of-hospital settings.
Collapse
|
12
|
Respiration Monitoring via Forcecardiography Sensors. SENSORS 2021; 21:s21123996. [PMID: 34207899 PMCID: PMC8228286 DOI: 10.3390/s21123996] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients’ discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland–Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases.
Collapse
|
13
|
Sieciński S, Kostka PS, Tkacz EJ. Gyrocardiography: A Review of the Definition, History, Waveform Description, and Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6675. [PMID: 33266401 PMCID: PMC7700364 DOI: 10.3390/s20226675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Gyrocardiography (GCG) is a non-invasive technique of analyzing cardiac vibrations by a MEMS (microelectromechanical system) gyroscope placed on a chest wall. Although its history is short in comparison with seismocardiography (SCG) and electrocardiography (ECG), GCG becomes a technique which may provide additional insight into the mechanical aspects of the cardiac cycle. In this review, we describe the summary of the history, definition, measurements, waveform description and applications of gyrocardiography. The review was conducted on about 55 works analyzed between November 2016 and September 2020. The aim of this literature review was to summarize the current state of knowledge in gyrocardiography, especially the definition, waveform description, the physiological and physical sources of the signal and its applications. Based on the analyzed works, we present the definition of GCG as a technique for registration and analysis of rotational component of local cardiac vibrations, waveform annotation, several applications of the gyrocardiography, including, heart rate estimation, heart rate variability analysis, hemodynamics analysis, and classification of various cardiac diseases.
Collapse
Affiliation(s)
- Szymon Sieciński
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland; (P.S.K.); (E.J.T.)
| | | | | |
Collapse
|
14
|
Zia J, Kimball J, Hersek S, Inan OT. Modeling Consistent Dynamics of Cardiogenic Vibrations in Low-Dimensional Subspace. IEEE J Biomed Health Inform 2020; 24:1887-1898. [PMID: 32175880 PMCID: PMC7394000 DOI: 10.1109/jbhi.2020.2980979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The seismocardiogram (SCG) measures the movement of the chest wall in response to underlying cardiovascular events. Though this signal contains clinically-relevant information, its morphology is both patient-specific and highly transient. In light of recent work suggesting the existence of population-level patterns in SCG signals, the objective of this study is to develop a method which harnesses these patterns to enable robust signal processing despite morphological variability. Specifically, we introduce seismocardiogram generative factor encoding (SGFE), which models the SCG waveform as a stochastic sample from a low-dimensional subspace defined by a unified set of generative factors. We then demonstrate that during dynamic processes such as exercise-recovery, learned factors correlate strongly with known generative factors including aortic opening (AO) and closing (AC), following consistent trajectories in subspace despite morphological differences. Furthermore, we found that changes in sensor location affect the perceived underlying dynamic process in predictable ways, thereby enabling algorithmic compensation for sensor misplacement during generative factor inference. Mapping these trajectories to AO and AC yielded R2 values from 0.81-0.90 for AO and 0.72-0.83 for AC respectively across five sensor positions. Identification of consistent behavior of SCG signals in low dimensions corroborates the existence of population-level patterns in these signals; SGFE may also serve as a harbinger for processing methods that are abstracted from the time domain, which may ultimately improve the feasibility of SCG utilization in ambulatory and outpatient settings.
Collapse
|
15
|
Yu S, Liu S. A Novel Adaptive Recursive Least Squares Filter to Remove the Motion Artifact in Seismocardiography. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1596. [PMID: 32182977 PMCID: PMC7146394 DOI: 10.3390/s20061596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
Abstract
This paper presents a novel adaptive recursive least squares filter (ARLSF) for motion artifact removal in the field of seismocardiography (SCG). This algorithm was tested with a consumer-grade accelerometer. This accelerometer was placed on the chest wall of 16 subjects whose ages ranged from 24 to 35 years. We recorded the SCG signal and the standard electrocardiogram (ECG) lead I signal by placing one electrode on the right arm (RA) and another on the left arm (LA) of the subjects. These subjects were asked to perform standing and walking movements on a treadmill. ARLSF was developed in MATLAB to process the collected SCG and ECG signals simultaneously. The SCG peaks and heart rate signals were extracted from the output of ARLSF. The results indicate a heartbeat detection accuracy of up to 98%. The heart rates estimated from SCG and ECG are similar under both standing and walking conditions. This observation shows that the proposed ARLSF could be an effective method to remove motion artifact from recorded SCG signals.
Collapse
Affiliation(s)
- Shuai Yu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Sheng Liu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
- Key Lab for Hydropower Transients of Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072, China
- Institute of Technological Sciences, Wuhan University, 8 East Lake South Road, Wuhan 430072, China
| |
Collapse
|
16
|
A Computational Framework for Data Fusion in MEMS-Based Cardiac and Respiratory Gating. SENSORS 2019; 19:s19194137. [PMID: 31554282 PMCID: PMC6811750 DOI: 10.3390/s19194137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
Dual cardiac and respiratory gating is a well-known technique for motion compensation in nuclear medicine imaging. In this study, we present a new data fusion framework for dual cardiac and respiratory gating based on multidimensional microelectromechanical (MEMS) motion sensors. Our approach aims at robust estimation of the chest vibrations, that is, high-frequency precordial vibrations and low-frequency respiratory movements for prospective gating in positron emission tomography (PET), computed tomography (CT), and radiotherapy. Our sensing modality in the context of this paper is a single dual sensor unit, including accelerometer and gyroscope sensors to measure chest movements in three different orientations. Since accelerometer- and gyroscope-derived respiration signals represent the inclination of the chest, they are similar in morphology and have the same units. Therefore, we use principal component analysis (PCA) to combine them into a single signal. In contrast to this, the accelerometer- and gyroscope-derived cardiac signals correspond to the translational and rotational motions of the chest, and have different waveform characteristics and units. To combine these signals, we use independent component analysis (ICA) in order to obtain the underlying cardiac motion. From this cardiac motion signal, we obtain the systolic and diastolic phases of cardiac cycles by using an adaptive multi-scale peak detector and a short-time autocorrelation function. Three groups of subjects, including healthy controls (n = 7), healthy volunteers (n = 12), and patients with a history of coronary artery disease (n = 19) were studied to establish a quantitative framework for assessing the performance of the presented work in prospective imaging applications. The results of this investigation showed a fairly strong positive correlation (average r = 0.73 to 0.87) between the MEMS-derived (including corresponding PCA fusion) respiration curves and the reference optical camera and respiration belt sensors. Additionally, the mean time offset of MEMS-driven triggers from camera-driven triggers was 0.23 to 0.3 ± 0.15 to 0.17 s. For each cardiac cycle, the feature of the MEMS signals indicating a systolic time interval was identified, and its relation to the total cardiac cycle length was also reported. The findings of this study suggest that the combination of chest angular velocity and accelerations using ICA and PCA can help to develop a robust dual cardiac and respiratory gating solution using only MEMS sensors. Therefore, the methods presented in this paper should help improve predictions of the cardiac and respiratory quiescent phases, particularly with the clinical patients. This study lays the groundwork for future research into clinical PET/CT imaging based on dual inertial sensors.
Collapse
|
17
|
D'Mello Y, Skoric J, Xu S, Roche PJR, Lortie M, Gagnon S, Plant DV. Real-Time Cardiac Beat Detection and Heart Rate Monitoring from Combined Seismocardiography and Gyrocardiography. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3472. [PMID: 31398948 PMCID: PMC6719139 DOI: 10.3390/s19163472] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023]
Abstract
Cardiography is an indispensable element of health care. However, the accessibility of at-home cardiac monitoring is limited by device complexity, accuracy, and cost. We have developed a real-time algorithm for heart rate monitoring and beat detection implemented in a custom-built, affordable system. These measurements were processed from seismocardiography (SCG) and gyrocardiography (GCG) signals recorded at the sternum, with concurrent electrocardiography (ECG) used as a reference. Our system demonstrated the feasibility of non-invasive electro-mechanical cardiac monitoring on supine, stationary subjects at a cost of $100, and with the SCG-GCG and ECG algorithms decoupled as standalone measurements. Testing was performed on 25 subjects in the supine position when relaxed, and when recovering from physical exercise, to record 23,984 cardiac cycles at heart rates in the range of 36-140 bpm. The correlation between the two measurements had r2 coefficients of 0.9783 and 0.9982 for normal (averaged) and instantaneous (beat identification) heart rates, respectively. At a sampling frequency of 250 Hz, the average computational time required was 0.088 s per measurement cycle, indicating the maximum refresh rate. A combined SCG and GCG measurement was found to improve accuracy due to fundamentally different noise rejection criteria in the mutually orthogonal signals. The speed, accuracy, and simplicity of our system validated its potential as a real-time, non-invasive, and affordable solution for outpatient cardiac monitoring in situations with negligible motion artifact.
Collapse
Affiliation(s)
- Yannick D'Mello
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2T5, Canada.
| | - James Skoric
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2T5, Canada
| | - Shicheng Xu
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2T5, Canada
| | - Philip J R Roche
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2T5, Canada
| | - Michel Lortie
- MacDonald, Dettwiler and Associates Corporation, Ottawa, ON K2K 1Y5, Canada
| | - Stephane Gagnon
- MacDonald, Dettwiler and Associates Corporation, Ottawa, ON K2K 1Y5, Canada
| | - David V Plant
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2T5, Canada
| |
Collapse
|
18
|
Lahdenoja O, Hurnanen T, Kaisti M, Koskinen J, Tuominen J, Vähä-Heikkilä M, Parikka L, Wiberg M, Koivisto T, Pänkäälä M. Cardiac monitoring of dogs via smartphone mechanocardiography: a feasibility study. Biomed Eng Online 2019; 18:47. [PMID: 31014339 PMCID: PMC6480821 DOI: 10.1186/s12938-019-0667-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/10/2019] [Indexed: 11/11/2022] Open
Abstract
Background In the context of monitoring dogs, usually, accelerometers have been used to measure the dog’s movement activity. Here, we study another application of the accelerometers (and gyroscopes)—seismocardiography (SCG) and gyrocardiography (GCG)—to monitor the dog’s heart. Together, 3-axis SCG and 3-axis GCG constitute of 6-axis mechanocardiography (MCG), which is inbuilt to most modern smartphones. Thus, the objective of this study is to assess the feasibility of using a smartphone-only solution to studying dog’s heart. Methods A clinical trial (CT) was conducted at the University Small Animal Hospital, University of Helsinki, Finland. 14 dogs (3 breeds) including 18 measurements (about one half of all) where the dog’s status was such that it was still and not panting were further selected for the heart rate (HR) analysis (each signal with a duration of 1 min). The measurement device in the CT was a custom Holter monitor including synchronized 6-axis MCG and ECG. In addition, 16 dogs (9 breeds, one mixed-breed) were measured at home settings by the dog owners themselves using Sony Xperia Android smartphone sensor to further validate the applicability of the method. Results The developed algorithm was able to select 10 good-quality signals from the 18 CT measurements, and for 7 of these, the automated algorithm was able to detect HR with deviation below or equal to 5 bpm (compared to ECG). Further visual analysis verified that, for approximately half of the dogs, the signal quality at home environment was sufficient for HR extraction at least in some signal locations, while the motion artifacts due to dog’s movements are the main challenges of the method. Conclusion With improved data analysis techniques for managing noisy measurements, the proposed approach could be useful in home use. The advantage of the method is that it can operate as a stand-alone application without requiring any extra equipment (such as smart collar or ECG patch).
Collapse
Affiliation(s)
- Olli Lahdenoja
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Vesilinnantie 5, 20014, Turku, Finland.
| | - Tero Hurnanen
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| | - Matti Kaisti
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| | - Juho Koskinen
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| | - Jarno Tuominen
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| | - Matti Vähä-Heikkilä
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| | - Laura Parikka
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, PL 57 Koetilantie 2, 00014, Helsinki, Finland
| | - Maria Wiberg
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, PL 57 Koetilantie 2, 00014, Helsinki, Finland
| | - Tero Koivisto
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| | - Mikko Pänkäälä
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| |
Collapse
|
19
|
Abstract
Cardiovascular disease is a major cause of death worldwide. New diagnostic tools are needed to provide early detection and intervention to reduce mortality and increase both the duration and quality of life for patients with heart disease. Seismocardiography (SCG) is a technique for noninvasive evaluation of cardiac activity. However, the complexity of SCG signals introduced challenges in SCG studies. Renewed interest in investigating the utility of SCG accelerated in recent years and benefited from new advances in low-cost lightweight sensors, and signal processing and machine learning methods. Recent studies demonstrated the potential clinical utility of SCG signals for the detection and monitoring of certain cardiovascular conditions. While some studies focused on investigating the genesis of SCG signals and their clinical applications, others focused on developing proper signal processing algorithms for noise reduction, and SCG signal feature extraction and classification. This paper reviews the recent advances in the field of SCG.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Biomedical Acoustics Research Laboratory, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
- Correspondence: ; Tel.: +1-407-580-4654
| | - Brian E. Solar
- Biomedical Acoustics Research Laboratory, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Andrew J. Bomar
- Biomedical Acoustics Research Laboratory, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL 32827, USA
| | - Richard H. Sandler
- Biomedical Acoustics Research Laboratory, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL 32827, USA
| | - Hansen A. Mansy
- Biomedical Acoustics Research Laboratory, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| |
Collapse
|