1
|
Liang D, Liu A, Wu L, Li C, Qian R, Chen X. Privacy-preserving multi-source semi-supervised domain adaptation for seizure prediction. Cogn Neurodyn 2024; 18:3521-3534. [PMID: 39712093 PMCID: PMC11655995 DOI: 10.1007/s11571-023-10026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 12/24/2024] Open
Abstract
Domain adaptation (DA) has been frequently used to solve the inter-patient variability problem in EEG-based seizure prediction. However, existing DA methods require access to the existing patients' data when adapting the model, which leads to privacy concerns. Besides, most of them treat the whole existing patients' data as one single source and attempt to minimize the discrepancy with the target patient. This manner ignores the inter-patient variability among source patients, making the adaptation more difficult. Considering theses issues simultaneously, we present a novel multi-source-free semi-supervised domain adaptive seizure prediction model (MSF-SSDA-SPM). MSF-SSDA-SPM considers each source patient as one single source and generates a pretrained model from each source. Without requiring access to the source data, MSF-SSDA-SPM performs adaptation just using these pretrained source models and limited labeled target data. Specifically, we freeze the classifiers of all the source models and optimize the source feature extractors in a joint manner. Then we design a knowledge distillation strategy to integrate the knowledge of these well-adapted source models into one single target model. On the CHB-MIT dataset, MSF-SSDA-SPM attains a sensitivity of 88.6%, a FPR of 0.182/h and an AUC of 0.856; on the Kaggle dataset, it achieves 78.6%, 0.178/h and 0.784, respectively. Experimental results demonstrate that MSF-SSDA-SPM achieves both high privacy-protection and promising prediction performance.
Collapse
Affiliation(s)
- Deng Liang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Aiping Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Le Wu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Chang Li
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009 Anhui China
| | - Ruobing Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 Anhui China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| |
Collapse
|
2
|
Tajadini B, Seydnejad SR, Rezakhani S. Short-term epileptic seizures prediction based on cepstrum analysis and signal morphology. BMC Biomed Eng 2024; 6:6. [PMID: 38946007 PMCID: PMC11215831 DOI: 10.1186/s42490-024-00081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/29/2024] [Indexed: 07/02/2024] Open
Abstract
This article aims to provide and implement a patient-specific seizure (for Intervention Time (IT) detection) prediction algorithm using non-invasive data to develop warning devices to prevent further patient injury and reduce stress. Employing algorithms with high initial data volume and computations time to increase the accuracy is an important problem in prediction issues. Consequently, reduction of calculations is met by applying only two effective EEG signal channels without manual removal of artifacts by visual inspection as the algorithm's input. Autoregression (AR) modeling and Cepstrum detect changes due to IT period. We carry out the goal of higher accuracy by increasing sensitivity to interictal epileptiform discharges or artifacts and reduce errors caused by them, taking advantage of the discrete wavelet transform and the comparison of two channels epochs by applying the median filter. Averaging and positive envelope methods are introduced to patient-specific thresholds become more differentiated as soon as possible and can be lead to sooner prediction. We examined this method on a mathematical model of adult epilepsy as well as on 10 patients with EEG data. The results of our experiments confirm that performance of the proposed approach in accuracy and average false prediction rate is superior to other algorithms. Simulation results have been shown the robustness of our proposed method to artifacts and errors, which is a step towards the development of real-time alarm devices by non-invasive techniques.
Collapse
Affiliation(s)
- Bahar Tajadini
- Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeid R Seydnejad
- Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Soheila Rezakhani
- Department of Neurology, Neuroscience Research Center, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Huang L, Zhou K, Chen S, Chen Y, Zhang J. Automatic detection of epilepsy from EEGs using a temporal convolutional network with a self-attention layer. Biomed Eng Online 2024; 23:50. [PMID: 38824547 PMCID: PMC11143608 DOI: 10.1186/s12938-024-01244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Over 60% of epilepsy patients globally are children, whose early diagnosis and treatment are critical for their development and can substantially reduce the disease's burden on both families and society. Numerous algorithms for automated epilepsy detection from EEGs have been proposed. Yet, the occurrence of epileptic seizures during an EEG exam cannot always be guaranteed in clinical practice. Models that exclusively use seizure EEGs for detection risk artificially enhanced performance metrics. Therefore, there is a pressing need for a universally applicable model that can perform automatic epilepsy detection in a variety of complex real-world scenarios. METHOD To address this problem, we have devised a novel technique employing a temporal convolutional neural network with self-attention (TCN-SA). Our model comprises two primary components: a TCN for extracting time-variant features from EEG signals, followed by a self-attention (SA) layer that assigns importance to these features. By focusing on key features, our model achieves heightened classification accuracy for epilepsy detection. RESULTS The efficacy of our model was validated on a pediatric epilepsy dataset we collected and on the Bonn dataset, attaining accuracies of 95.50% on our dataset, and 97.37% (A v. E), and 93.50% (B vs E), respectively. When compared with other deep learning architectures (temporal convolutional neural network, self-attention network, and standardized convolutional neural network) using the same datasets, our TCN-SA model demonstrated superior performance in the automated detection of epilepsy. CONCLUSION The proven effectiveness of the TCN-SA approach substantiates its potential as a valuable tool for the automated detection of epilepsy, offering significant benefits in diverse and complex real-world clinical settings.
Collapse
Affiliation(s)
- Leen Huang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Keying Zhou
- Department of Pediatrics, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
- Department of Pediatrics, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Pediatrics, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Siyang Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yanzhao Chen
- Department of Pediatrics, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
- Department of Pediatrics, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Pediatrics, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Jinxin Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Liu D, Dong X, Bian D, Zhou W. Epileptic Seizure Prediction Using Attention Augmented Convolutional Network. Int J Neural Syst 2023; 33:2350054. [PMID: 37675593 DOI: 10.1142/s0129065723500545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Early seizure prediction is crucial for epilepsy patients to reduce accidental injuries and improve their quality of life. Identifying pre-ictal EEG from the inter-ictal state is particularly challenging due to their nonictal nature and remarkable similarities. In this study, a novel epileptic seizure prediction method is proposed based on multi-head attention (MHA) augmented convolutional neural network (CNN) to address the issue of CNN's limit of capturing global information of input signals. First, data enhancement is performed on original EEG recordings to balance the pre-ictal and inter-ictal EEG data, and the EEG recordings are sliced into 6-second-long EEG segments. Subsequently, EEG time-frequency distribution is obtained using Stockwell transform (ST), and the attention augmented convolutional network is employed for feature extraction and classification. Finally, post-processing is utilized to reduce the false prediction rate (FPR). The CHB-MIT EEG database was used to evaluate the system. The validation results showed a segment-based sensitivity of 98.24% and an event-based sensitivity of 94.78% with a FPR of 0.05/h were yielded, respectively. The satisfying results of the proposed method demonstrate its possible potential for clinical applications.
Collapse
Affiliation(s)
- Dongsheng Liu
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Xingchen Dong
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Dong Bian
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
5
|
Liu S, Wang J, Li S, Cai L. Epileptic Seizure Detection and Prediction in EEGs Using Power Spectra Density Parameterization. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3884-3894. [PMID: 37725738 DOI: 10.1109/tnsre.2023.3317093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Power spectrum analysis is one of the effective tools for classifying epileptic signals based on electroencephalography (EEG) recordings. However, the conflation of periodic and aperiodic components within the EEG may presents an obstacle to epilepsy detection or prediction. In this paper, we explored the significance of the periodic and aperiodic components of the EEG power spectrum for the detection and prediction of epilepsy respectively. We use a power spectrum density parameterization method to separate the periodic and aperiodic components of the signals, and validate their roles in epilepsy detection and prediction on two public datasets. The average classification accuracy of the periodic and aperiodic components for 10 clinical tasks on the Bonn EEG database were 73.9% and 96.68%, respectively, and increases to 98.88% when combined. For 22 patients on the CHB-MIT Long-term EEG database, the combined features achieve an average detection accuracy of 99.95% and successfully predict all seizures with low false prediction rates. We conclude that both the periodic and aperiodic components of the EEG power spectrum contributed to discriminating different stages of epilepsy, but the aperiodic neural activity played a decisive role in classification. This discovery has significant implications for diagnosing epileptic seizures and providing personalized brain activity information to improve the accuracy and efficiency of epilepsy detection.
Collapse
|
6
|
Saemaldahr R, Ilyas M. Patient-Specific Preictal Pattern-Aware Epileptic Seizure Prediction with Federated Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:6578. [PMID: 37514873 PMCID: PMC10385318 DOI: 10.3390/s23146578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Electroencephalography (EEG) signals are the primary source for discriminating the preictal from the interictal stage, enabling early warnings before the seizure onset. Epileptic siezure prediction systems face significant challenges due to data scarcity, diversity, and privacy. This paper proposes a three-tier architecture for epileptic seizure prediction associated with the Federated Learning (FL) model, which is able to achieve enhanced capability by utilizing a significant number of seizure patterns from globally distributed patients while maintaining data privacy. The determination of the preictal state is influenced by global and local model-assisted decision making by modeling the two-level edge layer. The Spiking Encoder (SE), integrated with the Graph Convolutional Neural Network (Spiking-GCNN), works as the local model trained using a bi-timescale approach. Each local model utilizes the aggregated seizure knowledge obtained from the different medical centers through FL and determines the preictal probability in the coarse-grained personalization. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized in fine-grained personalization to recognize epileptic seizure patients by examining the outcomes of the FL model, heart rate variability features, and patient-specific clinical features. Thus, the proposed approach achieved 96.33% sensitivity and 96.14% specificity when tested on the CHB-MIT EEG dataset when modeling was performed using the bi-timescale approach and Spiking-GCNN-based epileptic pattern learning. Moreover, the adoption of federated learning greatly assists the proposed system, yielding a 96.28% higher accuracy as a result of addressing data scarcity.
Collapse
Affiliation(s)
- Raghdah Saemaldahr
- Department of Computer Science, Taibah University, Medina 42353, Saudi Arabia
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mohammad Ilyas
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
7
|
Wu X, Yang Z, Zhang T, Zhang L, Qiao L. An end-to-end seizure prediction approach using long short-term memory network. Front Hum Neurosci 2023; 17:1187794. [PMID: 37275341 PMCID: PMC10232837 DOI: 10.3389/fnhum.2023.1187794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
There are increasing epilepsy patients suffering from the pain of seizure onsets, and effective prediction of seizures could improve their quality of life. To obtain high sensitivity for epileptic seizure prediction, current studies generally need complex feature extraction operations, which heavily depends on the artificial experience (or domain knowledge) and is highly subjective. To address these issues, in this paper we propose an end-to-end epileptic seizure prediction approach based on the long short-term memory network (LSTM). In the new method, only the gamma band of raw electroencephalography (EEG) signals is extracted as network input directly for seizure prediction, thus avoiding subjective and expensive feature design process. Despite its simplicity, the proposed method achieves the mean sensitivity of 91.76% and false prediction rate (FPR) of 0.29/h on Children's Hospital Boston-MIT (CHB-MIT) scalp EEG Database, respectively, when identifying the preictal stage from the EEG signals. Furthermore, different from traditional methods that only consider the classification of preictal and interictal EEG, we introduce the postictal stage as an extra class in the proposed method. As a result, the performance of seizure prediction is further improved, obtaining a higher sensitivity of 92.17% and a low FPR of 0.27/h. The mean warning time is 44.46 min, which suggests that sufficient time is reserved for patients to take intervention measures by this prediction method.
Collapse
Affiliation(s)
- Xiao Wu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Zhaohui Yang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Tinglin Zhang
- School of Information, Yancheng Institute of Technology, Yancheng, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Lishan Qiao
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Yang Y, Qin X, Wen H, Li F, Lin X. Patient-specific approach using data fusion and adversarial training for epileptic seizure prediction. Front Comput Neurosci 2023; 17:1172987. [PMID: 37216065 PMCID: PMC10192566 DOI: 10.3389/fncom.2023.1172987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Epilepsy is the second common neurological disorder after headache, accurate and reliable prediction of seizures is of great clinical value. Most epileptic seizure prediction methods consider only the EEG signal or extract and classify the features of EEG and ECG signals separately, the improvement of prediction performance from multimodal data is not fully considered. In addition, epilepsy data are time-varying, with differences between each episode in a patient, making it difficult for traditional curve-fitting models to achieve high accuracy and reliability. In order to improve the accuracy and reliability of the prediction system, we propose a novel personalized approach based on data fusion and domain adversarial training to predict epileptic seizures using leave-one-out cross-validation, which achieves an average accuracy, sensitivity and specificity of 99.70, 99.76, and 99.61%, respectively, with an average error alarm rate (FAR) of 0.001. Finally, the advantage of this approach is demonstrated by comparison with recent relevant literature. This method will be incorporated into clinical practice to provide personalized reference information for epileptic seizure prediction.
Collapse
Affiliation(s)
- Yong Yang
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Xiaolin Qin
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Han Wen
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Feng Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoguang Lin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
9
|
Jiang L, He J, Pan H, Wu D, Jiang T, Liu J. Seizure detection algorithm based on improved functional brain network structure feature extraction. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Nafea MS, Ismail ZH. Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals-A Systematic Literature Review. Bioengineering (Basel) 2022; 9:781. [PMID: 36550987 PMCID: PMC9774931 DOI: 10.3390/bioengineering9120781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
Electroencephalography (EEG) is a complicated, non-stationary signal that requires extensive preprocessing and feature extraction approaches to be accurately analyzed. In recent times, Deep learning (DL) has shown great promise in exploiting the characteristics of EEG signals as it can learn relevant features from raw data autonomously. Although studies involving DL have become more common in the last two years, the topic of whether DL truly delivers advantages over conventional Machine learning (ML) methodologies remains unsettled. This study aims to present a detailed overview of the main challenges in the field of seizure detection, prediction, and classification utilizing EEG data, and the approaches taken to solve them using ML and DL methods. A systematic review was conducted surveying peer-reviewed publications published between 2017 and 16 July 2022 using two scientific databases (Web of Science and Scopus) totaling 6822 references after discarding duplicate publications. Whereas 2262 articles were screened based on the title, abstract, and keywords, only 214 were eligible for full-text assessment. A total of 91 papers have been included in this survey after meeting the eligible inclusion and exclusion criteria. The most significant findings from the review are summarized, and several important concepts involving ML and DL for seizure detection, prediction, and classification are discussed in further depth. This review aims to learn more about the different approaches for identifying different types and stages of epileptic seizures, which may then be employed to enhance the lives of epileptic patients in the future, as well as aid experts in the field.
Collapse
Affiliation(s)
- Mohamed Sami Nafea
- Computer Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Cairo 2033, Egypt
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Zool Hilmi Ismail
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
11
|
Šverko Z, Vrankic M, Vlahinić S, Rogelj P. Dynamic Connectivity Analysis Using Adaptive Window Size. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22145162. [PMID: 35890842 PMCID: PMC9320138 DOI: 10.3390/s22145162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 05/28/2023]
Abstract
In this paper, we propose a new method to study and evaluate the time-varying brain network dynamics. The proposed RICI-imCPCC method (relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient) is based on an adaptive window size and the imaginary part of the complex Pearson correlation coefficient. It reduces the weaknesses of the existing method of constant sliding window analysis with narrow and wide windows. These are the low temporal precision and low reliability for short connectivity periods for wide windows, and high susceptibility to noise for narrow windows, all resulting in low estimation accuracy. The proposed method overcomes these shortcomings by dynamically adjusting the window width using the RICI rule, which is based on the statistical properties of the area around the observed sample. In this paper, we compare the RICI-imCPCC with the existing constant sliding window analysis method and describe its advantages. First, the mathematical principles are established. Then, the comparison between the existing and the proposed method using synthetic and real electroencephalography (EEG) data is presented. The results show that the proposed RICI-imCPCC method has improved temporal resolution and estimation accuracy compared to the existing method and is less affected by the noise. The estimation error energy calculated for the RICI-imCPCC method on synthetic signals was lower by a factor of 1.22 compared to the error of the constant sliding window analysis using narrow window size imCPCC, by a factor of 2.87 compared to using wide window size imCPCC, by a factor of 6.69 compared to using narrow window size wPLI, and by a factor of 4.72 compared to using wide window size wPLI. Analysis of the real signals shows the ability of the proposed method to detect a P300 response and to detect a decrease in dynamic connectivity due to desynchronization and blockage of mu-rhythms.
Collapse
Affiliation(s)
- Zoran Šverko
- Department of Automation and Electronics, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; (Z.Š.); (S.V.)
| | - Miroslav Vrankic
- Department of Automation and Electronics, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; (Z.Š.); (S.V.)
| | - Saša Vlahinić
- Department of Automation and Electronics, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; (Z.Š.); (S.V.)
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia;
| |
Collapse
|
12
|
EEG Oscillatory Power and Complexity for Epileptic Seizure Detection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monitoring patients at risk of epileptic seizure is critical for optimal treatment and ensuing the reduction of seizure risk and complications. In general, seizure detection is done manually in hospitals and involves time-consuming visual inspection and interpretation by experts of electroencephalography (EEG) recordings. The purpose of this study is to investigate the pertinence of band-limited spectral power and signal complexity in order to discriminate between seizure and seizure-free EEG brain activity. The signal complexity and spectral power are evaluated in five frequency intervals, namely, the delta, theta, alpha, beta, and gamma bands, to be used as EEG signal feature representation. Classification of seizure and seizure-free data was performed by prevalent potent classifiers. Substantial comparative performance evaluation experiments were performed on a large EEG data record of 341 patients in the Temple University Hospital EEG seizure database. Based on statistically validated criteria, results show the efficiency of band-limited spectral power and signal complexity when using random forest and gradient-boosting decision tree classifiers (95% of the area under the curve (AUC) and 91% for both F-measure and accuracy). These results support the use of these automatic classification schemes to assist the practicing neurologist interpret EEG records more accurately and without tedious visual inspection.
Collapse
|
13
|
E P Moghaddam D, Sheth S, Haneef Z, Gavvala J, Aazhang B. Epileptic seizure prediction using spectral width of the covariance matrix. J Neural Eng 2022; 19. [PMID: 35320787 DOI: 10.1088/1741-2552/ac6063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Epilepsy is a common neurological disorder in which patients suffer from sudden and unpredictable seizures. Seizures are caused by excessive and abnormal neuronal activity. Different methods have been employed to investigate electroencephalogram (EEG) data in patients with epilepsy. This paper introduces a simple yet accurate array-based method to study and predict seizures. We use the CHB-MIT dataset (all 24 cases), which includes scalp EEG recordings. The proposed method is based on the random matrix theory. After applying wavelet decomposition to denoise the data, we analyze the spatial coherence of the epileptic recordings by looking at the width of the covariance matrix eigenvalue distribution at different time and frequency bins. We train patient-specific support vector machine (SVM) classifiers to distinguish between interictal and preictal data with high performance and a false prediction rate as low as 0.09/h. The proposed technique achieves an average accuracy, specificity, sensitivity, and area under the curve (AUC) of 99.05%, 93.56%, 99.09%, and 0.99, respectively. Our proposed method outperforms state-of-the-art works in terms of sensitivity while maintaining a low false prediction rate. Also, in contrast to neural networks, which may achieve high performance, this work provides high sensitivity without compromising interpretability.
Collapse
Affiliation(s)
- Dorsa E P Moghaddam
- Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, Houston, Texas, 77005, UNITED STATES
| | - Sameer Sheth
- Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Houston, Texas, 77005, UNITED STATES
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, Houston, Texas, 77030, UNITED STATES
| | - Jay Gavvala
- Neurology-Neurophysiology, Baylor College of Medicine, Baylor College of Medicine Medical Center, McNair Campus, 7200 Cambridge St., 9th Floor, MS: BCM609 Houston, TX 77030, Houston, Texas, 77030 , UNITED STATES
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, George R. Brown School of Engineering, 6100 Main Street, Houston, TX 77005, USA, Houston, 77005, UNITED STATES
| |
Collapse
|
14
|
Liang D, Liu A, Li C, Liu J, Chen X. A novel consistency-based training strategy for seizure prediction. J Neurosci Methods 2022; 372:109557. [PMID: 35276242 DOI: 10.1016/j.jneumeth.2022.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Early prediction of epilepsy seizures can warn the patients to take precautions and improve their lives significantly. In recent years, deep learning has become increasingly predominant in seizure prediction for its outstanding performance. With the aim of predicting unseen seizures, it is essential to guarantee the generalization ability of the model, especially considering the non-stationary nature of EEG and the scarcity of seizure events in EEG recordings. Stability training against extra perturbations is an intuitive and effective way to improve the model's ability to generalize. Though a great number of deep learning methods have been developed for seizure prediction, their strategies to increase generalization performance focus on improving the model's architecture itself, and few of them pay attention to the stability of the model against small perturbations. NEW METHOD In this study, we propose a novel consistency-based training strategy to address this issue. The proposed strategy underlines that a robust model should maintain consistent results for the same input under extra perturbations. Specifically, during training, we use stochastic augmentations to make the input vary from iteration to iteration and consider the output as a stochastic variable. Then a consistency constraint is constructed to penalize the difference between the current output and previous outputs. In this way, the generalization ability of the model will be fully enhanced. RESULTS To better verify the effectiveness of our proposed strategy, we implement it in two state-of-the-art models with public-available codes, including STFT CNN and Multi-view CNN. Notably, we compare with the first baseline on a scalp EEG dataset and the other on an intracranial EEG dataset. The results show that our strategy could improve the performance significantly for both of them. COMPARISON WITH EXISTING METHODS Our strategy has increased the sensitivity by 7.1% and reduced the false prediction rate by 0.12/h on the first baseline while improving the AUC by 0.020 on the second baseline. CONCLUSIONS This study is easy to implement, providing a new solution to enhance the performance of seizure prediction.
Collapse
Affiliation(s)
- Deng Liang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Aiping Liu
- Epilepsy Center, Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Chang Li
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jun Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Xun Chen
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China; Epilepsy Center, Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; USTC IAT-Huami Joint Laboratory for Brain-Machine Intelligence, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
15
|
Semisupervised Seizure Prediction in Scalp EEG Using Consistency Regularization. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1573076. [PMID: 35126902 PMCID: PMC8808146 DOI: 10.1155/2022/1573076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Early prediction of epilepsy seizures can warn the patients to take precautions and improve their lives significantly. In recent years, deep learning has become increasingly predominant in seizure prediction. However, existing deep learning-based approaches in this field require a great deal of labeled data to guarantee performance. At the same time, labeling EEG signals does require the expertise of an experienced pathologist and is incredibly time-consuming. To address this issue, we propose a novel Consistency-based Semisupervised Seizure Prediction Model (CSSPM), where only a fraction of training data is labeled. Our method is based on the principle of consistency regularization, which underlines that a robust model should maintain consistent results for the same input under extra perturbations. Specifically, by using stochastic augmentation and dropout, we consider the entire neural network as a stochastic model and apply a consistency constraint to penalize the difference between the current prediction and previous predictions. In this way, unlabeled data could be fully utilized to improve the decision boundary and enhance prediction performance. Compared with existing studies requiring all training data to be labeled, the proposed method only needs a small portion of data to be labeled while still achieving satisfactory results. Our method provides a promising solution to alleviate the labeling cost for real-world applications.
Collapse
|
16
|
Anandaraj A, Alphonse P. Tree based Ensemble for Enhanced Prediction (TEEP) of epileptic seizures. INTELL DATA ANAL 2022. [DOI: 10.3233/ida-205534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accurate and timely prediction of seizures can improve the quality of life of epileptic patients to a huge extent. This work presents a seizure prediction model that performs data extraction and feature engineering to enable effective demarcation of preictal signals from interictal signals. The proposed Tree based Ensemble for Enhanced Prediction (TEEP) model is composed of three major phases; the feature extraction phase, feature selection phase and the prediction phase. The data is preprocessed, and features are extracted based on the nature of the data. This enables the prediction algorithm to perform time-based predictions. Further, statistical features are also extracted, followed by the process of feature aggregation. The resultant data is passed to the feature selection module to identify the attributes that exhibit highest correlation with the prediction variable. Incorporation of these two modules enhances the generalization capability of the TEEP model. The resultant features are passed to the boosted ensemble model for training and prediction. The TEEP model is analyzed using the Epileptic Seizure Recognition Data from University Hospital of Bonn and the NIH Seizure Prediction data from Melbourne University, Australia. Results from both the datasets indicate effective performances. Comparisons with the existing state-of-the-art models in literature exhibits the enhanced prediction levels of the TEEP model.
Collapse
Affiliation(s)
- A. Anandaraj
- Department of Computer Science and Engineering, Sri Eshwar College of Engineering, Coimbatore, India
| | - P.J.A. Alphonse
- Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India
| |
Collapse
|
17
|
Arita S, Nishiyama D, Taniguchi T, Fukui D, Yamanaka M, Yamada H. Feature selection to classify lameness using a smartphone-based inertial measurement unit. PLoS One 2021; 16:e0258067. [PMID: 34591946 PMCID: PMC8483374 DOI: 10.1371/journal.pone.0258067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
Background and objectives Gait can be severely affected by pain, muscle weakness, and aging resulting in lameness. Despite the high incidence of lameness, there are no studies on the features that are useful for classifying lameness patterns. Therefore, we aimed to identify features of high importance for classifying population differences in lameness patterns using an inertial measurement unit mounted above the sacral region. Methods Features computed exhaustively for multidimensional time series consisting of three-axis angular velocities and three-axis acceleration were carefully selected using the Benjamini–Yekutieli procedure, and multiclass classification was performed using LightGBM (Microsoft Corp., Redmond, WA, USA). We calculated the relative importance of the features that contributed to the classification task in machine learning. Results The most important feature was found to be the absolute value of the Fourier coefficients of the second frequency calculated by the one-dimensional discrete Fourier transform for real input. This was determined by the fast Fourier transformation algorithm using data of a single gait cycle of the yaw angular velocity of the pelvic region. Conclusions Using an inertial measurement unit worn over the sacral region, we determined a set of features of high importance for classifying differences in lameness patterns based on different factors. This completely new set of indicators can be used to advance the understanding of lameness.
Collapse
Affiliation(s)
- Satoshi Arita
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Nishiyama
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| | - Takaya Taniguchi
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Fukui
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Manabu Yamanaka
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Yamada
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
18
|
Patient-specific method of sleep electroencephalography using wavelet packet transform and Bi-LSTM for epileptic seizure prediction. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Yang X, Zhao J, Sun Q, Lu J, Ma X. An Effective Dual Self-Attention Residual Network for Seizure Prediction. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1604-1613. [PMID: 34370668 DOI: 10.1109/tnsre.2021.3103210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As one of the most challenging data analysis tasks in chronic brain diseases, epileptic seizure prediction has attracted extensive attention from many researchers. Seizure prediction, can greatly improve patients' quality of life in many ways, such as preventing accidents and reducing harm that may occur during epileptic seizures. This work aims to develop a general method for predicting seizures in specific patients through exploring the time-frequency correlation of features obtained from multi-channel EEG signals. We convert the original EEG signals into spectrograms that represent time-frequency characteristics by applying short-time Fourier transform (STFT) to the EEG signals. For the first time, we propose a dual self-attention residual network (RDANet) that combines a spectrum attention module integrating local features with global features, with a channel attention module mining the interdependence between channel mappings to achieve better forecasting performance. Our proposed approach achieved a sensitivity of 89.33%, a specificity of 93.02%, an AUC of 91.26% and an accuracy of 92.07% on 13 patients from the public CHB-MIT scalp EEG dataset. Our experiments show that different EEG signal prediction segment lengths are an important factor affecting prediction performance. Our proposed method is competitive and achieves good robustness without patient-specific engineering.
Collapse
|
20
|
Bosl WJ, Leviton A, Loddenkemper T. Prediction of Seizure Recurrence. A Note of Caution. Front Neurol 2021; 12:675728. [PMID: 34054713 PMCID: PMC8155381 DOI: 10.3389/fneur.2021.675728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Great strides have been made recently in documenting that machine-learning programs can predict seizure occurrence in people who have epilepsy. Along with this progress have come claims that appear to us to be a bit premature. We anticipate that many people will benefit from seizure prediction. We also doubt that all will benefit. Although machine learning is a useful tool for aiding discovery, we believe that the greatest progress will come from deeper understanding of seizures, epilepsy, and the EEG features that enable seizure prediction. In this essay, we lay out reasons for optimism and skepticism.
Collapse
Affiliation(s)
- William J Bosl
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Health Informatics Program, University of San Francisco, San Francisco, CA, United States
| | - Alan Leviton
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Tobias Loddenkemper
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Li M, Sun X, Chen W. Patient-specific seizure detection method using nonlinear mode decomposition for long-term EEG signals. Med Biol Eng Comput 2020; 58:3075-3088. [DOI: 10.1007/s11517-020-02279-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
|
22
|
Borhade RR, Nagmode MS. Modified Atom Search Optimization-based Deep Recurrent Neural Network for epileptic seizure prediction using electroencephalogram signals. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Yang J, Sawan M. From Seizure Detection to Smart and Fully Embedded Seizure Prediction Engine: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1008-1023. [PMID: 32822304 DOI: 10.1109/tbcas.2020.3018465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent review papers have investigated seizure prediction, creating the possibility of preempting epileptic seizures. Correct seizure prediction can significantly improve the standard of living for the majority of epileptic patients, as the unpredictability of seizures is a major concern for them. Today, the development of algorithms, particularly in the field of machine learning, enables reliable and accurate seizure prediction using desktop computers. However, despite extensive research effort being devoted to developing seizure detection integrated circuits (ICs), dedicated seizure prediction ICs have not been developed yet. We believe that interdisciplinary study of system architecture, analog and digital ICs, and machine learning algorithms can promote the translation of scientific theory to a more realistic intelligent, integrated, and low-power system that can truly improve the standard of living for epileptic patients. This review explores topics ranging from signal acquisition analog circuits to classification algorithms and dedicated digital signal processing circuits for detection and prediction purposes, to provide a comprehensive and useful guideline for the construction, implementation and optimization of wearable and integrated smart seizure prediction systems.
Collapse
|
24
|
EEG Synchronization Analysis for Seizure Prediction: A Study on Data of Noninvasive Recordings. Processes (Basel) 2020. [DOI: 10.3390/pr8070846] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Epilepsy is a neurological disorder arising from anomalies of the electrical activity in the brain, affecting ~65 million individuals worldwide. Prediction methods, typically based on machine learning methods, require a large amount of data for training, in order to correctly classify seizures with small false alarm rates. Methods: In this work, we present a new database containing EEG scalp signals of 14 epileptic patients acquired at the Unit of Neurology and Neurophysiology of the University of Siena, Italy. Furthermore, a patient-specific seizure prediction method, based on the detection of synchronization patterns in the EEG, is proposed and tested on the data of the database. The use of noninvasive EEG data aims to explore the possibility of developing a noninvasive monitoring/control device for the prediction of seizures. The prediction method employs synchronization measures computed over all channel pairs and a computationally inexpensive threshold-based classification approach. Results and conclusions: The experimental analysis, performed by inspection and by the proposed threshold-based classifier on all the patients of the database, shows that the features extracted by the synchronization measures are able to detect preictal and ictal states and allow the prediction of the seizures few minutes before the seizure onsets.
Collapse
|
25
|
Lian Q, Qi Y, Pan G, Wang Y. Learning graph in graph convolutional neural networks for robust seizure prediction. J Neural Eng 2020; 17:035004. [DOI: 10.1088/1741-2552/ab909d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Zhang X, Yao L, Dong M, Liu Z, Zhang Y, Li Y. Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection. IEEE J Biomed Health Inform 2020; 24:2852-2859. [PMID: 32071011 DOI: 10.1109/jbhi.2020.2971610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epilepsy is a chronic neurological disorder characterized by the occurrence of spontaneous seizures, which affects about one percent of the worlds population. Most of the current seizure detection approaches strongly rely on patient history records and thus fail in the patient-independent situation of detecting the new patients. To overcome such limitation, we propose a robust and explainable epileptic seizure detection model that effectively learns from seizure states while eliminates the inter-patient noises. A complex deep neural network model is proposed to learn the pure seizure-specific representation from the raw non-invasive electroencephalography (EEG) signals through adversarial training. Furthermore, to enhance the explainability, we develop an attention mechanism to automatically learn the importance of each EEG channels in the seizure diagnosis procedure. The proposed approach is evaluated over the Temple University Hospital EEG (TUH EEG) database. The experimental results illustrate that our model outperforms the competitive state-of-the-art baselines with low latency. Moreover, the designed attention mechanism is demonstrated ables to provide fine-grained information for pathological analysis. We propose an effective and efficient patient-independent diagnosis approach of epileptic seizure based on raw EEG signals without manually feature engineering, which is a step toward the development of large-scale deployment for real-life use.
Collapse
|
27
|
A LightGBM-Based EEG Analysis Method for Driver Mental States Classification. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:3761203. [PMID: 31611912 PMCID: PMC6755292 DOI: 10.1155/2019/3761203] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/29/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023]
Abstract
Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. The comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI).
Collapse
|