1
|
Ma Q, Kaladji A, Shu H, Yang G, Lucas A, Haigron P. Beyond strong labels: Weakly-supervised learning based on Gaussian pseudo labels for the segmentation of ellipse-like vascular structures in non-contrast CTs. Med Image Anal 2025; 99:103378. [PMID: 39500029 DOI: 10.1016/j.media.2024.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 12/02/2024]
Abstract
Deep learning-based automated segmentation of vascular structures in preoperative CT angiography (CTA) images contributes to computer-assisted diagnosis and interventions. While CTA is the common standard, non-contrast CT imaging has the advantage of avoiding complications associated with contrast agents. However, the challenges of labor-intensive labeling and high labeling variability due to the ambiguity of vascular boundaries hinder conventional strong-label-based, fully-supervised learning in non-contrast CTs. This paper introduces a novel weakly-supervised framework using the elliptical topology nature of vascular structures in CT slices. It includes an efficient annotation process based on our proposed standards, an approach of generating 2D Gaussian heatmaps serving as pseudo labels, and a training process through a combination of voxel reconstruction loss and distribution loss with the pseudo labels. We assess the effectiveness of the proposed method on one local and two public datasets comprising non-contrast CT scans, particularly focusing on the abdominal aorta. On the local dataset, our weakly-supervised learning approach based on pseudo labels outperforms strong-label-based fully-supervised learning (1.54% of Dice score on average), reducing labeling time by around 82.0%. The efficiency in generating pseudo labels allows the inclusion of label-agnostic external data in the training set, leading to an additional improvement in performance (2.74% of Dice score on average) with a reduction of 66.3% labeling time, where the labeling time remains considerably less than that of strong labels. On the public dataset, the pseudo labels achieve an overall improvement of 1.95% in Dice score for 2D models with a reduction of 68% of the Hausdorff distance for 3D model.
Collapse
Affiliation(s)
- Qixiang Ma
- Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France; Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Univ Rennes, Inserm, Southeast University, F-35000 Rennes, France, Nanjing 210096, China.
| | - Adrien Kaladji
- Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France; Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Univ Rennes, Inserm, Southeast University, F-35000 Rennes, France, Nanjing 210096, China
| | - Huazhong Shu
- Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Univ Rennes, Inserm, Southeast University, F-35000 Rennes, France, Nanjing 210096, China; Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
| | - Guanyu Yang
- Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Univ Rennes, Inserm, Southeast University, F-35000 Rennes, France, Nanjing 210096, China; Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
| | - Antoine Lucas
- Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France; Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Univ Rennes, Inserm, Southeast University, F-35000 Rennes, France, Nanjing 210096, China
| | - Pascal Haigron
- Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France; Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Univ Rennes, Inserm, Southeast University, F-35000 Rennes, France, Nanjing 210096, China
| |
Collapse
|
2
|
Ji H, Kim S, Sunwoo L, Jang S, Lee HY, Yoo S. Integrating Clinical Data and Medical Imaging in Lung Cancer: Feasibility Study Using the Observational Medical Outcomes Partnership Common Data Model Extension. JMIR Med Inform 2024; 12:e59187. [PMID: 38996330 PMCID: PMC11282389 DOI: 10.2196/59187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Digital transformation, particularly the integration of medical imaging with clinical data, is vital in personalized medicine. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standardizes health data. However, integrating medical imaging remains a challenge. OBJECTIVE This study proposes a method for combining medical imaging data with the OMOP CDM to improve multimodal research. METHODS Our approach included the analysis and selection of digital imaging and communications in medicine header tags, validation of data formats, and alignment according to the OMOP CDM framework. The Fast Healthcare Interoperability Resources ImagingStudy profile guided our consistency in column naming and definitions. Imaging Common Data Model (I-CDM), constructed using the entity-attribute-value model, facilitates scalable and efficient medical imaging data management. For patients with lung cancer diagnosed between 2010 and 2017, we introduced 4 new tables-IMAGING_STUDY, IMAGING_SERIES, IMAGING_ANNOTATION, and FILEPATH-to standardize various imaging-related data and link to clinical data. RESULTS This framework underscores the effectiveness of I-CDM in enhancing our understanding of lung cancer diagnostics and treatment strategies. The implementation of the I-CDM tables enabled the structured organization of a comprehensive data set, including 282,098 IMAGING_STUDY, 5,674,425 IMAGING_SERIES, and 48,536 IMAGING_ANNOTATION records, illustrating the extensive scope and depth of the approach. A scenario-based analysis using actual data from patients with lung cancer underscored the feasibility of our approach. A data quality check applying 44 specific rules confirmed the high integrity of the constructed data set, with all checks successfully passed, underscoring the reliability of our findings. CONCLUSIONS These findings indicate that I-CDM can improve the integration and analysis of medical imaging and clinical data. By addressing the challenges in data standardization and management, our approach contributes toward enhancing diagnostics and treatment strategies. Future research should expand the application of I-CDM to diverse disease populations and explore its wide-ranging utility for medical conditions.
Collapse
Affiliation(s)
- Hyerim Ji
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Seok Kim
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Sowon Jang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Ho-Young Lee
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Sooyoung Yoo
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| |
Collapse
|
3
|
Wang H, Jin Q, Li S, Liu S, Wang M, Song Z. A comprehensive survey on deep active learning in medical image analysis. Med Image Anal 2024; 95:103201. [PMID: 38776841 DOI: 10.1016/j.media.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severely hampers the development of deep learning in this field. To reduce annotation costs, active learning aims to select the most informative samples for annotation and train high-performance models with as few labeled samples as possible. In this survey, we review the core methods of active learning, including the evaluation of informativeness and sampling strategy. For the first time, we provide a detailed summary of the integration of active learning with other label-efficient techniques, such as semi-supervised, self-supervised learning, and so on. We also summarize active learning works that are specifically tailored to medical image analysis. Additionally, we conduct a thorough comparative analysis of the performance of different AL methods in medical image analysis with experiments. In the end, we offer our perspectives on the future trends and challenges of active learning and its applications in medical image analysis. An accompanying paper list and code for the comparative analysis is available in https://github.com/LightersWang/Awesome-Active-Learning-for-Medical-Image-Analysis.
Collapse
Affiliation(s)
- Haoran Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Qiuye Jin
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Shiman Li
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Siyu Liu
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Manning Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China.
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China.
| |
Collapse
|
4
|
Wei Y, Deng Y, Sun C, Lin M, Jiang H, Peng Y. Deep learning with noisy labels in medical prediction problems: a scoping review. J Am Med Inform Assoc 2024; 31:1596-1607. [PMID: 38814164 PMCID: PMC11187424 DOI: 10.1093/jamia/ocae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVES Medical research faces substantial challenges from noisy labels attributed to factors like inter-expert variability and machine-extracted labels. Despite this, the adoption of label noise management remains limited, and label noise is largely ignored. To this end, there is a critical need to conduct a scoping review focusing on the problem space. This scoping review aims to comprehensively review label noise management in deep learning-based medical prediction problems, which includes label noise detection, label noise handling, and evaluation. Research involving label uncertainty is also included. METHODS Our scoping review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched 4 databases, including PubMed, IEEE Xplore, Google Scholar, and Semantic Scholar. Our search terms include "noisy label AND medical/healthcare/clinical," "uncertainty AND medical/healthcare/clinical," and "noise AND medical/healthcare/clinical." RESULTS A total of 60 papers met inclusion criteria between 2016 and 2023. A series of practical questions in medical research are investigated. These include the sources of label noise, the impact of label noise, the detection of label noise, label noise handling techniques, and their evaluation. Categorization of both label noise detection methods and handling techniques are provided. DISCUSSION From a methodological perspective, we observe that the medical community has been up to date with the broader deep-learning community, given that most techniques have been evaluated on medical data. We recommend considering label noise as a standard element in medical research, even if it is not dedicated to handling noisy labels. Initial experiments can start with easy-to-implement methods, such as noise-robust loss functions, weighting, and curriculum learning.
Collapse
Affiliation(s)
- Yishu Wei
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
- Reddit Inc., San Francisco, CA 16093, United States
| | - Yu Deng
- Center for Health Information Partnerships, Northwestern University, Chicago, IL 10611, United States
| | - Cong Sun
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| | - Mingquan Lin
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hongmei Jiang
- Department of Statistics and Data Science, Northwestern University, Evanston, IL 60208, United States
| | - Yifan Peng
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
5
|
Yang Z, Leng L, Li M, Chu J. A computer-aid multi-task light-weight network for macroscopic feces diagnosis. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:15671-15686. [PMID: 35250359 PMCID: PMC8884099 DOI: 10.1007/s11042-022-12565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/15/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The abnormal traits and colors of feces typically indicate that the patients are probably suffering from tumor or digestive-system diseases. Thus a fast, accurate and automatic health diagnosis system based on feces is urgently necessary for improving the examination speed and reducing the infection risk. The rarity of the pathological images would deteriorate the accuracy performance of the trained models. In order to alleviate this problem, we employ augmentation and over-sampling to expand the samples of the classes that have few samples in the training batch. In order to achieve an impressive recognition performance and leverage the latent correlation between the traits and colors of feces pathological samples, a multi-task network is developed to recognize colors and traits of the macroscopic feces images. The parameter number of a single multi-task network is generally much smaller than the total parameter number of multiple single-task networks, so the storage cost is reduced. The loss function of the multi-task network is the weighted sum of the losses of the two tasks. In this paper, the weights of the tasks are determined according to their difficulty levels that are measured by the fitted linear functions. The sufficient experiments confirm that the proposed method can yield higher accuracies, and the efficiency is also improved.
Collapse
Affiliation(s)
- Ziyuan Yang
- School of Software, Nanchang Hangkong University, Nanchang, 330063 People’s Republic of China
- College of Computer Science, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Lu Leng
- School of Software, Nanchang Hangkong University, Nanchang, 330063 People’s Republic of China
- School of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, 120749 Republic of Korea
| | - Ming Li
- School of Information Engineering, Nanchang Hangkong University, Nanchang, 330063 People’s Republic of China
| | - Jun Chu
- School of Software, Nanchang Hangkong University, Nanchang, 330063 People’s Republic of China
| |
Collapse
|