1
|
Ferrario M, Guberti D, Carrara M. Central blood pressure estimation from radial artery in septic shock. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039889 DOI: 10.1109/embc53108.2024.10782743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Pulse Pressure (PP) increases progressively from the central arteries to the peripheral arteries, this well-established hemodynamic phenomenon is called pulse pressure amplification (PPA). Acute critically ill patients may be subject to profound alterations of cardiac and arterial properties. However, blood pressure (BP) is commonly monitored from one peripheral catheter only. The estimation of a central pressure is pivotal to investigate the PPA and thus to track changes in pulse wave propagation and to identify vascular dysfunctions. We analyzed the data from an animal experiment of polymicrobial septic shock to verify if the estimate of central BP from the radial artery BP waveform only permits the identification of the septic-induced alterations in pulse wave transmission. The method consists of an adaptive transfer function based on a model of wave transmission and reflection, and characterized by two parameters, the reflection coefficient Γ and the time delay Td. The average root mean square error (RMSE) was assessed at each experimental time point, baseline: 3.5 (3.2, 3.9) mmHg, after septic shock development: 5.0 (3.6, 8.0) mmHg, after resuscitation: 12.3 (8.3, 16.7) mmHg, showing a good level of agreement with the measured waveforms.
Collapse
|
2
|
Guberti D, Ferrario M, Liu S, Jakob SM, Carrara M. Wave Separation Analysis to Assess Cardiovascular Alterations Induced by Sepsis. IEEE Trans Biomed Eng 2024; 71:1719-1731. [PMID: 38163302 DOI: 10.1109/tbme.2023.3349104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Sepsis induces a severe decompensation of arterial and cardiac functional properties, leading to important modifications of arterial blood pressure (ABP) waveform, not resolved by recommended therapy, as shown by previous works. The aim of this study is to quantify the changes in ABP waveform morphology and wave reflections during a long-term swine experiment of polymicrobial sepsis and resuscitation, to deepen the understanding of the cardiovascular response to standard resuscitation therapy. METHODS We analyzed 14 pigs: polymicrobial sepsis was induced in 9 pigs followed by standard resuscitation and 5 pigs were treated as sham controls. Septic animals were studied at baseline (T1), after sepsis development (T2), and after 24 h (T3) and 48 h (T4) of therapy administration, and sham controls at the same time points. ABP and arterial blood flow were measured in the left and right carotid artery, respectively. Pulse wave analysis and wave separation techniques were used to estimate arterial input impedance, carotid characteristic impedance, forward and backward waves, indices of wave reflections such as reflection magnitude and reflection index, and augmentation index. RESULTS Sepsis led to an acute alteration of ABP waveform passing from type A to type B or C; consistently, the reflection phenomena were significantly reduced. The resuscitation was successful in reaching targeted hemodynamic stability, but it failed in restoring a physiological blood propagation and reflection. CONCLUSION Septic pigs persistently showed altered reflected waves even after 48 hours of successful therapy according to guidelines, suggesting a persistent hidden cardiovascular disorder. SIGNIFICANCE The proposed indices may be useful to unravel the complex cardiovascular response to therapy administration in septic patients and could potentially be used for risk stratification of patient deterioration. Whether alterations of blood propagation and reflection contribute to persisting organ dysfunction after hemodynamic stabilization should be further investigated.
Collapse
|
3
|
Garcia B, Su F, Dewachter L, Favory R, Khaldi A, Moiroux-Sahraoui A, Annoni F, Vasques-Nóvoa F, Rocha-Oliveira E, Roncon-Albuquerque R, Hubesch G, Njimi H, Vincent JL, Taccone FS, Creteur J, Herpain A. Myocardial effects of angiotensin II compared to norepinephrine in an animal model of septic shock. Crit Care 2022; 26:281. [PMID: 36117167 PMCID: PMC9482744 DOI: 10.1186/s13054-022-04161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Angiotensin II is one of the vasopressors available for use in septic shock. However, its effects on the septic myocardium remain unclear. The aim of the study was to compare the effects of angiotensin II and norepinephrine on cardiac function and myocardial oxygen consumption, inflammation and injury in experimental septic shock. METHODS This randomized, open-label, controlled study was performed in 20 anesthetized and mechanically ventilated pigs. Septic shock was induced by fecal peritonitis in 16 animals, and four pigs served as shams. Resuscitation with fluids, antimicrobial therapy and abdominal drainage was initiated one hour after the onset of septic shock. Septic pigs were randomly allocated to receive one of the two drugs to maintain mean arterial pressure between 65 and 75 mmHg for 8 h. RESULTS There were no differences in MAP, cardiac output, heart rate, fluid balance or tissue perfusion indices in the two treatment groups but myocardial oxygen consumption was greater in the norepinephrine-treated animals. Myocardial mRNA expression of interleukin-6, interleukin-6 receptor, interleukin-1 alpha, and interleukin-1 beta was higher in the norepinephrine than in the angiotensin II group. CONCLUSIONS In septic shock, angiotensin II administration is associated with a similar level of cardiovascular resuscitation and less myocardial oxygen consumption, and inflammation compared to norepinephrine.
Collapse
Affiliation(s)
- Bruno Garcia
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium.
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France.
| | - Fuhong Su
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Raphaël Favory
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Amina Khaldi
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Filippo Annoni
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Estela Rocha-Oliveira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Roberto Roncon-Albuquerque
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Emergency and Intensive Care Medicine, São João Hospital Center, Porto, Portugal
| | - Geraldine Hubesch
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Vincent
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio S Taccone
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Bollen Pinto B, Ferrario M, Herpain A, Brunelli L, Bendjelid K, Carrara M, Pastorelli R. Metabolites Concentration in Plasma and Heart Tissue in Relation to High Sensitive Cardiac Troponin T Level in Septic Shock Pigs. Metabolites 2022; 12:319. [PMID: 35448505 PMCID: PMC9024493 DOI: 10.3390/metabo12040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Elevated circulating cardiac troponin T (cTnT) is frequent in septic shock patients. Signs of myocardial ischemia and myocyte necrosis are not universally present, but the precise mechanism for elevated cTnT is unknown. We investigated plasma and heart tissue metabolites concentration in six septic shock (SS) and three sham swine undergoing a protocol of polymicrobial septic shock and resuscitation, in order to highlight possible pathways and biomarkers involved in troponin release (high sensitive cardiac troponin T, hs-cTnT). The animals were divided into two groups: the high cTnT group (n = 3) were pigs showing a significantly higher concentration of cTnT and lactate after resuscitation; the low cTnT group (n = 6, three sham and three septic shock) characterized by a lower value of cTnT and a lactate level < 2 mmol/L. Spearman correlation was assessed on plasma fold-change of cTnT, cytokines (TNF-α and IL-10), and metabolites. Finally, the fold-change between the end of resuscitation and baseline values (Res./BL) of plasma metabolites was used to perform a partial least square discriminant analysis (PLS-DA) with three latent variables. Before building the model, the number of features was reduced by summing up the metabolites of the same class that resulted similarly correlated to cTnT fold-change. Proline and glycine were significantly higher in the high cTnT group at the end of experiment both in the myocardium and plasma analyses. Moreover, plasma proline fold-change was found to be positively correlated with cTnT and cytokine fold-changes, and trans-4-hydroxyproline (t4-OH-Pro) fold-change was positively correlated with cTnT fold-change. The PLS-DA model was able to separate the two groups and, among the first ranked features based on VIP score, we found sugars, t4-OH-Pro, proline, creatinine, total amount of sphingomyelins, and glycine. Proline, t4-OH-Pro, and glycine are very abundant in collagen, and our results may suggest that collagen degradation could represent a possible mechanism contributing to septic myocardial injury. The common phenotype of septic cardiomyopathy could be associated to dysregulated collagen metabolism and/or degradation, further exacerbated by higher inflammation and oxidative stress.
Collapse
Affiliation(s)
- Bernardo Bollen Pinto
- Department of Acute Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (B.B.P.); (K.B.)
- Geneva Perioperative Basic, Translational and Clinical Research Group, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Manuela Ferrario
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Antoine Herpain
- Department of Intensive Care, Erasme University Hospital—Université Libre de Bruxelles, 1070 Brussels, Belgium;
- Experimental Laboratory of Intensive Care—Erasme University Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (L.B.); (R.P.)
| | - Karim Bendjelid
- Department of Acute Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (B.B.P.); (K.B.)
- Department of Anesthesiology, Pharmacology and Intensive Care, Geneva Hemodynamic Research Group, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Marta Carrara
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (L.B.); (R.P.)
| |
Collapse
|
5
|
Carrara M, Herpain A, Baselli G, Ferrario M. Vascular Decoupling in Septic Shock: The Combined Role of Autonomic Nervous System, Arterial Stiffness, and Peripheral Vascular Tone. Front Physiol 2020; 11:594. [PMID: 32733257 PMCID: PMC7358433 DOI: 10.3389/fphys.2020.00594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute inflammation and sepsis are known to induce changes in vascular properties, leading to increased arterial stiffness; at the same time, the autonomic nervous system (ANS) also affects vascular properties by modulating the arterial smooth muscle tone, and it is widely reported that sepsis and septic shock severely impair ANS activity. Currently, clinical guidelines are mainly concerned to resuscitate septic shock patients from hypotension, hypovolemia, and hypoperfusion; however, if the current resuscitation maneuvers have a beneficial effect also on vascular properties and autonomic functionality is still unclear. The objective of this work is to assess the effects of standard resuscitation at vascular level and to verify if there is any association between alterations in vascular properties and ANS activity. METHODS Six pigs underwent a protocol of polymicrobial septic shock and resuscitation (fluids and noradrenaline). The arterial blood pressure (ABP) waveform was recorded in the central aorta and in the peripheral radial and femoral artery. The characteristic arterial time constant was computed at the three arterial sites based on the two-element Windkessel model, to characterize the overall arterial vascular tree. Moreover, independent estimates of total arterial compliance (AC) and total peripheral resistance (TPR) were performed. Baroreflex sensitivity (BRS), low frequency (LF, 0.04-0.15 Hz) spectral power of diastolic blood pressure, and indices of heart rate variability (HRV) were computed to assess ANS functionality. RESULTS Septic shock induced a severe vascular disarray, decoupling the usual pressure wave propagation from central to peripheral sites; this phenomenon appeared as an inversion of the physiological pulse pressure (PP) amplification, with a higher PP in the central aorta than in the peripheral arteries. The time constant was decreased, together with AC and TPR. ANS dysfunction was described by a reduced BRS, decreased LF power, and suppressed HRV. This compromised condition was not resolved by administration of fluids and noradrenaline. Thus, a persistent vascular and autonomic dysfunction were reported also in the resuscitated animals, and they were found to be significantly correlated. CONCLUSION Measures of vascular function and ANS activity could add information to standard hemodynamic and clinical markers, and the current resuscitation strategies could benefit from the adjunction of these additional functional indices.
Collapse
Affiliation(s)
- Marta Carrara
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Manuela Ferrario
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
6
|
Carrara M, Herpain A, Ferrario M. Tachycardia control in septic shock with esmolol and ivabradine: a comparison on heart function. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2756-2759. [PMID: 33018577 DOI: 10.1109/embc44109.2020.9175624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Persisting tachycardia is often observed in resuscitated septic shock patients, and it is an independent risk factor for increased mortality. Recently, several drugs, such as esmolol and ivabradine, have been proved to be beneficial in HR control, but their overall impact on cardiac functions needs further investigation. The aim of this study is to study the effects of the two drugs on heart function in a protocol of polymicrobial septic shock and resuscitation. Twelve pigs were divided into three experimental groups: the esmolol-treated group (n=4), the ivabradine-treated group (n=5) and the control group (n=3). Cardiac autonomic activity was estimated by heart rate variability (HRV) indices and baroreflex sensitivity (BRS). The Buckberg index was adopted to evaluate myocardial oxygenation efficiency. Septic shock induced a severe autonomic dysfunction and a lower cardiac efficiency, not resolved by fluids resuscitation. The administration of the drugs improved both the HRV and the BRS, but this favourable condition was preserved after noradrenaline administration only in the esmolol group. The interaction of esmolol with the autonomic system is beneficial in septic shock to restore an improved condition of HRV and control, while ivabradine is not as effective when administered in adjunction to noradrenaline.
Collapse
|
7
|
Carrara M, Niccolo A, Herpain A, Ferrario M. Reducing tachycardia in septic shock patients: do esmolol and ivabradine have a chronotropic effect only? ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:382-385. [PMID: 33018008 DOI: 10.1109/embc44109.2020.9176309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An elevated heart rate (HR) often persists in resuscitated septic shock patients, increasing the risk of mortality. Several drugs for HR control, such as esmolol and ivabradine, have been tested in the recent years, but their benefit on the overall cardiovascular system is still under investigation. The aim of this study is to investigate the hemodynamic effects of the two drugs in a protocol of polymicrobial septic shock and resuscitation, mainly focusing on the vascular function. Twelve pigs were divided into three experimental groups: the esmolol-treated group (n=4), the ivabradine-treated group (n=5) and the control group (n=3). The characteristic arterial time constant τ was computed on aortic arterial pressure (AoP), together with estimates of total arterial compliance and peripheral resistance. Power spectral analysis of aortic and radial diastolic BP oscillations was performed to estimate the sympathetic autonomic control of vascular tone. Septic shock induced a severe cardiac and vascular disarray, only partially resolved by resuscitation. The administration of esmolol, but not ivabradine, was beneficial both for cardiac and vascular function, thereby its adjunction to standard therapies could help to improve patient's condition and optimize the resuscitation strategies.Clinical Relevance-This study shows a potential beneficial effect of esmolol on the arterial tree.
Collapse
|