1
|
Sel K, Osman D, Zare F, Masoumi Shahrbabak S, Brattain L, Hahn J, Inan OT, Mukkamala R, Palmer J, Paydarfar D, Pettigrew RI, Quyyumi AA, Telfer B, Jafari R. Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact. J Am Heart Assoc 2024; 13:e031981. [PMID: 39087582 PMCID: PMC11681439 DOI: 10.1161/jaha.123.031981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The past several decades have seen rapid advances in diagnosis and treatment of cardiovascular diseases and stroke, enabled by technological breakthroughs in imaging, genomics, and physiological monitoring, coupled with therapeutic interventions. We now face the challenge of how to (1) rapidly process large, complex multimodal and multiscale medical measurements; (2) map all available data streams to the trajectories of disease states over the patient's lifetime; and (3) apply this information for optimal clinical interventions and outcomes. Here we review new advances that may address these challenges using digital twin technology to fulfill the promise of personalized cardiovascular medical practice. Rooted in engineering mechanics and manufacturing, the digital twin is a virtual representation engineered to model and simulate its physical counterpart. Recent breakthroughs in scientific computation, artificial intelligence, and sensor technology have enabled rapid bidirectional interactions between the virtual-physical counterparts with measurements of the physical twin that inform and improve its virtual twin, which in turn provide updated virtual projections of disease trajectories and anticipated clinical outcomes. Verification, validation, and uncertainty quantification builds confidence and trust by clinicians and patients in the digital twin and establishes boundaries for the use of simulations in cardiovascular medicine. Mechanistic physiological models form the fundamental building blocks of the personalized digital twin that continuously forecast optimal management of cardiovascular health using individualized data streams. We present exemplars from the existing body of literature pertaining to mechanistic model development for cardiovascular dynamics and summarize existing technical challenges and opportunities pertaining to the foundation of a digital twin.
Collapse
Affiliation(s)
- Kaan Sel
- Laboratory for Information & Decision Systems (LIDS)Massachusetts Institute of TechnologyCambridgeMAUSA
| | - Deen Osman
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Fatemeh Zare
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
| | | | - Laura Brattain
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - Jin‐Oh Hahn
- Department of Mechanical EngineeringUniversity of MarylandCollege ParkMDUSA
| | - Omer T. Inan
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Anesthesiology and Perioperative MedicineUniversity of PittsburghPittsburghPAUSA
| | - Jeffrey Palmer
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - David Paydarfar
- Department of NeurologyThe University of Texas at Austin Dell Medical SchoolAustinTXUSA
| | | | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Brian Telfer
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - Roozbeh Jafari
- Laboratory for Information & Decision Systems (LIDS)Massachusetts Institute of TechnologyCambridgeMAUSA
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
- School of Engineering MedicineTexas A&M UniversityHoustonTXUSA
| |
Collapse
|
2
|
Yanagisawa N, Nishizaki Y, Yao B, Zhang J, Kasai T. Changepoint Detection in Heart Rate Variability Indices in Older Patients Without Cancer at End of Life Using Ballistocardiography Signals: Preliminary Retrospective Study. JMIR Form Res 2024; 8:e53453. [PMID: 38345857 PMCID: PMC10897814 DOI: 10.2196/53453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND In an aging society such as Japan, where the number of older people continues to increase, providing in-hospital end-of-life care for all deaths, and end-of-life care outside of hospitals, such as at home or in nursing homes, will be difficult. In end-of-life care, monitoring patients is important to understand their condition and predict survival time; this information gives family members and caregivers time to prepare for the end of life. However, with no clear indicators, health care providers must subjectively decide if an older patient is in the end-of-life stage, considering factors such as condition changes and decreased food intake. This complicates decisions for family members, especially during home-based care. OBJECTIVE The purpose of this preliminary retrospective study was to determine whether and how changes in heart rate variability (HRV) indices estimated from ballistocardiography (BCG) occur before the date of death in terminally ill older patients, and ultimately to predict the date of death from the changepoint. METHODS This retrospective pilot study assessed the medical records of 15 older patients admitted to a special nursing home between August 2019 and December 2021. Patient characteristics and time-domain HRV indices such as the average normal-to-normal (ANN) interval, SD of the normal-to-normal (SDNN) interval, and root mean square of successive differences (RMSSD) from at least 2 months before the date of death were collected. Overall trends of indices were examined by drawing a restricted cubic spline curve. A repeated measures ANOVA was performed to evaluate changes in the indices over the observation period. To explore more detailed changes in HRV, a piecewise regression analysis was conducted to estimate the changepoint of HRV indices. RESULTS The 15 patients included 8 men and 7 women with a median age of 93 (IQR 91-96) years. The cubic spline curve showed a gradual decline of indices from approximately 30 days before the patients' deaths. The repeated measures ANOVA showed that when compared with 8 weeks before death, the ratio of the geometric mean of ANN (0.90, 95% CI 0.84-0.98; P=.005) and RMSSD (0.83, 95% CI 0.70-0.99; P=.03) began to decrease 3 weeks before death. The piecewise regression analysis estimated the changepoints for ANN, SDNN, and RMSSD at -34.5 (95% CI -42.5 to -26.5; P<.001), -33.0 (95% CI -40.9 to -25.1; P<.001), and -35.0 (95% CI -42.3 to -27.7; P<.001) days, respectively, before death. CONCLUSIONS This preliminary study identified the changepoint of HRV indices before death in older patients at end of life. Although few data were examined, our findings indicated that HRV indices from BCG can be useful for monitoring and predicting survival time in older patients at end of life. The study and results suggest the potential for more objective and accurate prognostic tools in predicting end-of-life outcomes.
Collapse
Affiliation(s)
| | - Yuji Nishizaki
- Division of Medical Education, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Takatoshi Kasai
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Zaid M, Sala L, Despins L, Heise D, Popescu M, Skubic M, Ahmad S, Emter CA, Huxley VH, Guidoboni G. Cardiovascular sex-differences: insights via physiology-based modeling and potential for noninvasive sensing via ballistocardiography. Front Cardiovasc Med 2023; 10:1215958. [PMID: 37868782 PMCID: PMC10587415 DOI: 10.3389/fcvm.2023.1215958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
In this study, anatomical and functional differences between men and women in their cardiovascular systems and how these differences manifest in blood circulation are theoretically and experimentally investigated. A validated mathematical model of the cardiovascular system is used as a virtual laboratory to simulate and compare multiple scenarios where parameters associated with sex differences are varied. Cardiovascular model parameters related with women's faster heart rate, stronger ventricular contractility, and smaller blood vessels are used as inputs to quantify the impact (i) on the distribution of blood volume through the cardiovascular system, (ii) on the cardiovascular indexes describing the coupling between ventricles and arteries, and (iii) on the ballistocardiogram (BCG) signal. The model-predicted outputs are found to be consistent with published clinical data. Model simulations suggest that the balance between the contractile function of the left ventricle and the load opposed by the arterial circulation attains similar levels in females and males, but is achieved through different combinations of factors. Additionally, we examine the potential of using the BCG waveform, which is directly related to cardiovascular volumes, as a noninvasive method for monitoring cardiovascular function. Our findings provide valuable insights into the underlying mechanisms of cardiovascular sex differences and may help facilitate the development of effective noninvasive cardiovascular monitoring methods for early diagnosis and prevention of cardiovascular disease in both women and men.
Collapse
Affiliation(s)
- Mohamed Zaid
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Lorenzo Sala
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Laurel Despins
- Sinclair School of Nursing, University of Missouri, Columbia, MO, United States
| | - David Heise
- Science, Technology & Mathematics, College of Arts and Sciences, Lincoln University, Jefferson City, MO, United States
| | - Mihail Popescu
- Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Marjorie Skubic
- Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Salman Ahmad
- Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Craig A. Emter
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Virginia H. Huxley
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
- National Center for Gender Physiology, University of Missouri, Columbia, MO, United States
| | - Giovanna Guidoboni
- Electrical and Computer Engineering, Maine College of Engineering and Computing, University of Maine, Orono, ME, United States
| |
Collapse
|
4
|
Feng J, Huang W, Jiang J, Wang Y, Zhang X, Li Q, Jiao X. Non-invasive monitoring of cardiac function through Ballistocardiogram: an algorithm integrating short-time Fourier transform and ensemble empirical mode decomposition. Front Physiol 2023; 14:1201722. [PMID: 37664434 PMCID: PMC10472450 DOI: 10.3389/fphys.2023.1201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
The Ballistocardiogram (BCG) is a vibration signal that is generated by the displacement of the entire body due to the injection of blood during each heartbeat. It has been extensively utilized to monitor heart rate. The morphological features of the BCG signal serve as effective indicators for the identification of atrial fibrillation and heart failure, holding great significance for BCG signal analysis. The IJK-complex identification allows for the estimation of inter-beat intervals (IBI) and enables a more detailed analysis of BCG amplitude and interval waves. This study presents a novel algorithm for identifying the IJK-complex in BCG signals, which is an improvement over most existing algorithms that only perform IBI estimation. The proposed algorithm employs a short-time Fourier transform and summation across frequencies to initially estimate the occurrence of the J wave using peak finding, followed by Ensemble Empirical Mode Decomposition and a regional search to precisely identify the J wave. The algorithm's ability to detect the morphological features of BCG signals and estimate heart rates was validated through experiments conducted on 10 healthy subjects and 2 patients with coronary heart disease. In comparison to commonly used methods, the presented scheme ensures accurate heart rate estimation and exhibits superior capability in detecting BCG morphological features. This advancement holds significant value for future applications involving BCG signals.
Collapse
Affiliation(s)
- Jingda Feng
- Department of Aerospace Science and Technology, Space Engineering University, Beijing, China
- China Astronaut Research and Training Center, Beijing, China
| | - WeiFen Huang
- China Astronaut Research and Training Center, Beijing, China
| | - Jin Jiang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Yanlei Wang
- China Astronaut Research and Training Center, Beijing, China
| | - Xiang Zhang
- China Astronaut Research and Training Center, Beijing, China
| | - Qijie Li
- China Astronaut Research and Training Center, Beijing, China
| | - Xuejun Jiao
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
5
|
Sumali B, Mitsukura Y, Nishimura T. Contactless continuous heart rate monitoring system using ballistocardiography. PLoS One 2022; 17:e0272072. [PMID: 35905114 PMCID: PMC9337676 DOI: 10.1371/journal.pone.0272072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular disease is the number one cause of death in the world and is a serious problem. In the case of cardiopulmonary arrest due to myocardial infarction, the survival rate is as low as 13.3% one month after resuscitation, which birthed the need for continuous heart monitoring. In this study, we develop a Ballistocardiogram (BCG) measurement system using a load cell installed on a chair and a heart rate estimation algorithm that is robust to waveform changes, with the aim of constructing a non-contact heart rate acquisition system. The proposed system was evaluated by utilizing data obtained from 13 healthy subjects and 1 subject with abnormal ECG who were simultaneously measured with ECG. The output of the BCG system was confirmed to change with the same period as the ECG data obtained as the correct answer, and the synchronization of the R-peak positions was confirmed for all cases. As a result of comparing the heart rate intervals estimated from BCG and those obtained from ECG, it was confirmed that the same heart rate variability (HRV) features could be obtained even for abnormal ECG subject.
Collapse
Affiliation(s)
- Brian Sumali
- Keio Global Research Institute, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| | - Yasue Mitsukura
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
- * E-mail:
| | - Toshihiko Nishimura
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
6
|
Cheng T, Jiang F, Li Q, Zeng J, Zhang B. Quantitative Analysis Using Consecutive Time Window for Unobtrusive Atrial Fibrillation Detection Based on Ballistocardiogram Signal. SENSORS (BASEL, SWITZERLAND) 2022; 22:5516. [PMID: 35898020 PMCID: PMC9331962 DOI: 10.3390/s22155516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW-RQA features. As validation, the CTW-RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW-RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW-RQA features effectively supplement the existing BCG features for AF detection.
Collapse
Affiliation(s)
- Tianqing Cheng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; (T.C.); (Q.L.); (J.Z.)
| | - Fangfang Jiang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; (T.C.); (Q.L.); (J.Z.)
| | - Qing Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; (T.C.); (Q.L.); (J.Z.)
| | - Jitao Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; (T.C.); (Q.L.); (J.Z.)
| | - Biyong Zhang
- College of Medicine and Biological Information Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
- BOBO Technology, Hangzhou 310000, China
| |
Collapse
|
7
|
Tavakolian K, Inan OT, Hahn JO, Di Rienzo M. Editorial: Cardiac Vibration Signals: Old Techniques, New Tricks, and Applications. Front Physiol 2022; 13:931362. [PMID: 35784881 PMCID: PMC9248966 DOI: 10.3389/fphys.2022.931362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kouhyar Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
- *Correspondence: Kouhyar Tavakolian,
| | - Omer T. Inan
- College of Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jin-Oh Hahn
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, United States
| | | |
Collapse
|
8
|
Galli A, Montree RJH, Que S, Peri E, Vullings R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4035. [PMID: 35684656 PMCID: PMC9185322 DOI: 10.3390/s22114035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
This work presents an overview of the main strategies that have been proposed for non-invasive monitoring of heart rate (HR) in extramural and home settings. We discuss three categories of sensing according to what physiological effect is used to measure the pulsatile activity of the heart, and we focus on an illustrative sensing modality for each of them. Therefore, electrocardiography, photoplethysmography, and mechanocardiography are presented as illustrative modalities to sense electrical activity, mechanical activity, and the peripheral effect of heart activity. In this paper, we describe the physical principles underlying the three categories and the characteristics of the different types of sensors that belong to each class, and we touch upon the most used software strategies that are currently adopted to effectively and reliably extract HR. In addition, we investigate the strengths and weaknesses of each category linked to the different applications in order to provide the reader with guidelines for selecting the most suitable solution according to the requirements and constraints of the application.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Information Engineering, University of Padova, I-35131 Padova, Italy;
| | - Roel J. H. Montree
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Shuhao Que
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Elisabetta Peri
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Rik Vullings
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| |
Collapse
|
9
|
Zaid M, Sala L, Ivey JR, Tharp DL, Mueller CM, Thorne PK, Kelly SC, Silva KAS, Amin AR, Ruiz-Lozano P, Kapiloff MS, Despins L, Popescu M, Keller J, Skubic M, Ahmad S, Emter CA, Guidoboni G. Mechanism-Driven Modeling to Aid Non-invasive Monitoring of Cardiac Function via Ballistocardiography. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:788264. [PMID: 35252962 PMCID: PMC8888976 DOI: 10.3389/fmedt.2022.788264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Left ventricular (LV) catheterization provides LV pressure-volume (P-V) loops and it represents the gold standard for cardiac function monitoring. This technique, however, is invasive and this limits its applicability in clinical and in-home settings. Ballistocardiography (BCG) is a good candidate for non-invasive cardiac monitoring, as it is based on capturing non-invasively the body motion that results from the blood flowing through the cardiovascular system. This work aims at building a mechanistic connection between changes in the BCG signal, changes in the P-V loops and changes in cardiac function. A mechanism-driven model based on cardiovascular physiology has been used as a virtual laboratory to predict how changes in cardiac function will manifest in the BCG waveform. Specifically, model simulations indicate that a decline in LV contractility results in an increase of the relative timing between the ECG and BCG signal and a decrease in BCG amplitude. The predicted changes have subsequently been observed in measurements on three swine serving as pre-clinical models for pre- and post-myocardial infarction conditions. The reproducibility of BCG measurements has been assessed on repeated, consecutive sessions of data acquisitions on three additional swine. Overall, this study provides experimental evidence supporting the utilization of mechanism-driven mathematical modeling as a guide to interpret changes in the BCG signal on the basis of cardiovascular physiology, thereby advancing the BCG technique as an effective method for non-invasive monitoring of cardiac function.
Collapse
Affiliation(s)
- Mohamed Zaid
- Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Lorenzo Sala
- Centre de Recherche Inria Saclay Île-De-France, Palaiseau, France
| | - Jan R. Ivey
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Darla L. Tharp
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Christina M. Mueller
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Pamela K. Thorne
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Shannon C. Kelly
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Kleiton Augusto Santos Silva
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Amira R. Amin
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | | | - Michael S. Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, United States
| | - Laurel Despins
- Sinclair School of Nursing, University of Missouri, Columbia, MO, United States
| | - Mihail Popescu
- Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO, United States
| | - James Keller
- Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Marjorie Skubic
- Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Salman Ahmad
- Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Craig A. Emter
- Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Giovanna Guidoboni
- Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
- Mathematics, College of Arts and Science, University of Missouri, Columbia, MO, United States
- *Correspondence: Giovanna Guidoboni
| |
Collapse
|
10
|
Marazzi NM, Guidoboni G, Zaid M, Sala L, Ahmad S, Despins L, Popescu M, Skubic M, Keller J. Combining Physiology-Based Modeling and Evolutionary Algorithms for Personalized, Noninvasive Cardiovascular Assessment Based on Electrocardiography and Ballistocardiography. Front Physiol 2022; 12:739035. [PMID: 35095545 PMCID: PMC8790319 DOI: 10.3389/fphys.2021.739035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study proposes a novel approach to obtain personalized estimates of cardiovascular parameters by combining (i) electrocardiography and ballistocardiography for noninvasive cardiovascular monitoring, (ii) a physiology-based mathematical model for predicting personalized cardiovascular variables, and (iii) an evolutionary algorithm (EA) for searching optimal model parameters.Methods: Electrocardiogram (ECG), ballistocardiogram (BCG), and a total of six blood pressure measurements are recorded on three healthy subjects. The R peaks in the ECG are used to segment the BCG signal into single BCG curves for each heart beat. The time distance between R peaks is used as an input for a validated physiology-based mathematical model that predicts distributions of pressures and volumes in the cardiovascular system, along with the associated BCG curve. An EA is designed to search the generation of parameter values of the cardiovascular model that optimizes the match between model-predicted and experimentally-measured BCG curves. The physiological relevance of the optimal EA solution is evaluated a posteriori by comparing the model-predicted blood pressure with a cuff placed on the arm of the subjects to measure the blood pressure.Results: The proposed approach successfully captures amplitudes and timings of the most prominent peak and valley in the BCG curve, also known as the J peak and K valley. The values of cardiovascular parameters pertaining to ventricular function can be estimated by the EA in a consistent manner when the search is performed over five different BCG curves corresponding to five different heart-beats of the same subject. Notably, the blood pressure predicted by the physiology-based model with the personalized parameter values provided by the EA search exhibits a very good agreement with the cuff-based blood pressure measurement.Conclusion: The combination of EA with physiology-based modeling proved capable of providing personalized estimates of cardiovascular parameters and physiological variables of great interest, such as blood pressure. This novel approach opens the possibility for developing quantitative devices for noninvasive cardiovascular monitoring based on BCG sensing.
Collapse
Affiliation(s)
- Nicholas Mattia Marazzi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Giovanna Guidoboni
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
- Department of Mathematics, University of Missouri, Columbia, MO, United States
- *Correspondence: Giovanna Guidoboni
| | - Mohamed Zaid
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Lorenzo Sala
- Centre de Recherche Inria Saclay-Ile de France, Palaiseau, France
| | - Salman Ahmad
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel Despins
- Sinclair School of Nursing, University of Missouri, Columbia, MO, United States
| | - Mihail Popescu
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Marjorie Skubic
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - James Keller
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Rabineau J, Nonclercq A, Leiner T, van de Borne P, Migeotte PF, Haut B. Closed-Loop Multiscale Computational Model of Human Blood Circulation. Applications to Ballistocardiography. Front Physiol 2021; 12:734311. [PMID: 34955874 PMCID: PMC8697684 DOI: 10.3389/fphys.2021.734311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac mechanical activity leads to periodic changes in the distribution of blood throughout the body, which causes micro-oscillations of the body's center of mass and can be measured by ballistocardiography (BCG). However, many of the BCG findings are based on parameters whose origins are poorly understood. Here, we generate simulated multidimensional BCG signals based on a more exhaustive and accurate computational model of blood circulation than previous attempts. This model consists in a closed loop 0D-1D multiscale representation of the human blood circulation. The 0D elements include the cardiac chambers, cardiac valves, arterioles, capillaries, venules, and veins, while the 1D elements include 55 systemic and 57 pulmonary arteries. The simulated multidimensional BCG signal is computed based on the distribution of blood in the different compartments and their anatomical position given by whole-body magnetic resonance angiography on a healthy young subject. We use this model to analyze the elements affecting the BCG signal on its different axes, allowing a better interpretation of clinical records. We also evaluate the impact of filtering and healthy aging on the BCG signal. The results offer a better view of the physiological meaning of BCG, as compared to previous models considering mainly the contribution of the aorta and focusing on longitudinal acceleration BCG. The shape of experimental BCG signals can be reproduced, and their amplitudes are in the range of experimental records. The contributions of the cardiac chambers and the pulmonary circulation are non-negligible, especially on the lateral and transversal components of the velocity BCG signal. The shapes and amplitudes of the BCG waveforms are changing with age, and we propose a scaling law to estimate the pulse wave velocity based on the time intervals between the peaks of the acceleration BCG signal. We also suggest new formulas to estimate the stroke volume and its changes based on the BCG signal expressed in terms of acceleration and kinetic energy.
Collapse
Affiliation(s)
- Jeremy Rabineau
- TIPs, Université Libre de Bruxelles, Brussels, Belgium
- LPHYS, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, Netherlands
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Benoit Haut
- TIPs, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
12
|
Augustin CM, Gsell MA, Karabelas E, Willemen E, Prinzen FW, Lumens J, Vigmond EJ, Plank G. A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2021; 386:114092. [PMID: 34630765 PMCID: PMC7611781 DOI: 10.1016/j.cma.2021.114092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.
Collapse
Affiliation(s)
- Christoph M. Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A.F. Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Erik Willemen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Frits W. Prinzen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Correspondence to: Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/IV, Graz 8010, Austria. (G. Plank)
| |
Collapse
|
13
|
Augustin CM, Gsell MAF, Karabelas E, Willemen E, Prinzen FW, Lumens J, Vigmond EJ, Plank G. A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2021; 386:114092. [PMID: 34630765 DOI: 10.1016/jxma.2021.114092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.
Collapse
Affiliation(s)
- Christoph M Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Erik Willemen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Frits W Prinzen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
14
|
Zaid M, Ahmad S, Suliman A, Camazine M, Weber I, Sheppard J, Popescu M, Keller J, Despins L, Skubic M, Guidoboni G. Noninvasive cardiovascular monitoring based on electrocardiography and ballistocardiography: a feasibility study on patients in the surgical intensive care unit. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:951-954. [PMID: 34891446 DOI: 10.1109/embc46164.2021.9629531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The time interval between the peaks in the electroccardiogram (ECG) and ballistocardiogram (BCG) waveforms, TEB, has been associated with the pre-ejection period (PEP), which is an important marker of ventricular contractility. However, the applicability of BCG-related markers in clinical practice is limited by the difficulty to obtain a replicable and consistent signal on patients. In this study, we test the feasibility of BCG measurements within a complex clinical setting, by means of an accelerometer under the head pillow of patients admitted to the Surgical Intensive Care Unit (SICU). The proposed technique proved capable of capturing TEB based on the R peaks in the ECG and the BCG in its head-to-toe and dorso- ventral directions. TEB detection was found to be consistent and repeatable both in healthy individuals and SICU patients over multiple data acquisition sessions. This work provides a promising starting point to investigate how TEB changes may relate to the patients' complex health conditions and give additional clinical insight into their care needs.
Collapse
|
15
|
ZHOU TENGDA, MEN SHAOYANG, LIANG JINGXIAN, YU BAOXIAN, ZHANG HAN, LUO XIAOMU. 1D U-NET++: AN EFFECTIVE METHOD FOR BALLISTOCARDIOGRAM J-PEAK DETECTION. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heart rate measurement through Ballistocardiogram (BCG) signal is an efficient method for long-term cardiac activity monitoring in real-time, especially for patients with cardiovascular and cerebrovascular disease. In this study, we propose a one-dimensional (1D) U-net++ to identify the position of J-peak in BCG signals automatically. The proposed 1D U-net++ is based on a 1D convolution neural network through dense skip connection backward transfer data features. The low-level and high-level data features of the BCG signals are combined with the last layer features of 1D U-net++ to shorten the semantic gap when the encoder and decoder feature skip connection. The BCG signals of eight healthy subjects were collected for experimental verification, and the accuracy and precision of J-peak detection reached 99.4% and 99.3%, respectively. The experimental results demonstrate that our proposed method can effectively identify J-peak in BCG signal.
Collapse
Affiliation(s)
- TENGDA ZHOU
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - SHAOYANG MEN
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - JINGXIAN LIANG
- Department of Physics and Telecommunications Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - BAOXIAN YU
- Department of Physics and Telecommunications Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - HAN ZHANG
- Department of Physics and Telecommunications Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - XIAOMU LUO
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| |
Collapse
|
16
|
Shin S, Mousavi A, Lyle S, Jang E, Yousefian P, Mukkamala R, Jang DG, Kwon UK, Kim YH, Hahn JO. Posture-Dependent Variability in Wrist Ballistocardiogram-Photoplethysmogram Pulse Transit Time: Implication to Cuff-Less Blood Pressure Tracking. IEEE Trans Biomed Eng 2021; 69:347-355. [PMID: 34197317 DOI: 10.1109/tbme.2021.3094200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Toward the ultimate goal of robust cuff-less blood pressure (BP) tracking with wrist wearables against postural changes, the goal of this work was to investigate posture-dependent variability in pulse transit time (PTT) measured with ballistocardiogram (BCG) and photoplethysmogram (PPG) signal pair at the wrist. METHODS BCG and PPG signals were acquired from 25 subjects under the combination of 3 body (standing, sitting, and supine) and 3 arm (vertical in head-to-foot direction, placed on the chest, and holding a shoulder) postures. PTT was computed as the time interval between the BCG J wave and the PPG foot, and the impact of the 9 postures on PTT was analyzed by invoking an array of possible physical mechanisms. RESULTS Our work suggests that (i) wrist BCG-PPG PTT is consistent under standing and sitting postures with vertically held arms; and (ii) changes in wrist orientation and height as well as restrictions in body and arm movement may alter wrist BCG-PPG PTT via distortions in the wrist BCG and PPG waveforms. The results indicate that wrist BCG-PPG PTT varies with respect to postures even when BP remains constant. CONCLUSION The potential of cuff-less BP tracking via wrist BCG-PPG PTT demonstrated under standing posture with arms vertically down in the head-to-foot direction may not generalize to other body and arm postures. SIGNIFICANCE Understanding the physical mechanisms responsible for posture-induced BCG-PPG PTT variability may increase the versatility of the wrist BCG for cuff-less BP tracking.
Collapse
|
17
|
Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled Multi-Physics Approach. MATHEMATICS 2021. [DOI: 10.3390/math9111247] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mathematical models of the human heart are evolving to become a cornerstone of precision medicine and support clinical decision making by providing a powerful tool to understand the mechanisms underlying pathophysiological conditions. In this study, we present a detailed mathematical description of a fully coupled multi-scale model of the human heart, including electrophysiology, mechanics, and a closed-loop model of circulation. State-of-the-art models based on human physiology are used to describe membrane kinetics, excitation-contraction coupling and active tension generation in the atria and the ventricles. Furthermore, we highlight ways to adapt this framework to patient specific measurements to build digital twins. The validity of the model is demonstrated through simulations on a personalized whole heart geometry based on magnetic resonance imaging data of a healthy volunteer. Additionally, the fully coupled model was employed to evaluate the effects of a typical atrial ablation scar on the cardiovascular system. With this work, we provide an adaptable multi-scale model that allows a comprehensive personalization from ion channels to the organ level enabling digital twin modeling.
Collapse
|
18
|
Wan R, Huang Y, Wu X. Detection of Ventricular Fibrillation Based on Ballistocardiography by Constructing an Effective Feature Set. SENSORS (BASEL, SWITZERLAND) 2021; 21:3524. [PMID: 34069374 PMCID: PMC8158750 DOI: 10.3390/s21103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
Ventricular fibrillation (VF) is a type of fatal arrhythmia that can cause sudden death within minutes. The study of a VF detection algorithm has important clinical significance. This study aimed to develop an algorithm for the automatic detection of VF based on the acquisition of cardiac mechanical activity-related signals, namely ballistocardiography (BCG), by non-contact sensors. BCG signals, including VF, sinus rhythm, and motion artifacts, were collected through electric defibrillation experiments in pigs. Through autocorrelation and S transform, the time-frequency graph with obvious information of cardiac rhythmic activity was obtained, and a feature set of 13 elements was constructed for each 7 s segment after statistical analysis and hierarchical clustering. Then, the random forest classifier was used to classify VF and non-VF, and two paradigms of intra-patient and inter-patient were used to evaluate the performance. The results showed that the sensitivity and specificity were 0.965 and 0.958 under 10-fold cross-validation, and they were 0.947 and 0.946 under leave-one-subject-out cross-validation. In conclusion, the proposed algorithm combining feature extraction and machine learning can effectively detect VF in BCG, laying a foundation for the development of long-term self-cardiac monitoring at home and a VF real-time detection and alarm system.
Collapse
Affiliation(s)
- Rongru Wan
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (R.W.); (Y.H.)
| | - Yanqi Huang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (R.W.); (Y.H.)
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (R.W.); (Y.H.)
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai 200093, China
| |
Collapse
|
19
|
Ahmedov S, Amirjanov A. Genetic-fuzzy logic model for a non-invasive measurement of a stroke volume. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 203:106046. [PMID: 33743490 DOI: 10.1016/j.cmpb.2021.106046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite the importance of stroke volume readings in understanding the work of the cardiovascular system in patients, its routine daily measurement outside of a hospital in the absence of special equipment presents a problem for a comprehensive assessment of the heart performance. OBJECTIVE The purpose of this study was to develop a new non-invasive technique for measuring a stroke volume based on the relationship between time skin warming and a blood flow. METHODS . Ninety two randomly selected volunteers (54 males, aged 30.1 ± 11.9 years old, and 38 females, aged 35.8 ± 12.4 years old) were recruited for this study. The time skin warming was determined by applying on the wrist above the arterial pulsation a thermoelectric cooler using the Peltier effect. During recording the participants were in the supine position. Blood pressure was measured by sphygmomanometer. Heart performance was assessed by Murata ballistocardiographic sensor, detecting displacement of the whole body during each cardiac ejection of blood. The data provided by this sensor included heart rate, respiratory rate, heart rate variability and a stroke volume. Linear, non-linear statistical regression models and fuzzy logic were used to analyse the degree of interrelation between BCG-measured stroke volume and the time skin warming. RESULTS Comparative analysis of results indicated that the generic-fuzzy logic model demonstrated a high level of dependency (R = 0.803) between input (participants' time skin warming, pulse pressure and age) and output (ballistocardiographic stroke volume) parameters. CONCLUSIONS The method described in the paper offers a simple, portable, and low-cost solution that can even be used in a home setting to measure the stroke volume. The principle of the proposed method is based on the interrelation between time skin warming and blood flow. The latter, corrected by corresponding age and pulse pressure, expresses the participant's stroke volume. Adopting the genetic-fuzzy model significantly improved the accuracy of stroke volume's measurement and made the proposed method reliable for assessing of the cardiovascular system. This daily practice technique would help healthcare provider get an early diagnosis of cardiac dysfunctions and track heart changes during stress, e.g., in sport.
Collapse
Affiliation(s)
- Shahin Ahmedov
- School of Health, Cyprus Health and Social Sciences University, Guzelyurt, Kutlu Adali Bulvari, Turkey
| | - Adil Amirjanov
- Computer Engineering Department, Near East University, Nicosia, N. Cyprus (via Mersin-10, Turkey).
| |
Collapse
|
20
|
Despins LA, Guidoboni G, Skubic M, Sala L, Enayati M, Popescu M, Deroche CB. Using Sensor Signals in the Early Detection of Heart Failure: A Case Study. J Gerontol Nurs 2021; 46:41-46. [PMID: 32598000 DOI: 10.3928/00989134-20200605-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early detection of heart failure in older adults will be a significant issue for the foreseeable future. The current article presents a case study to describe how monitoring ballistocardiogram (BCG) waveforms captured non-invasively using sensors placed under a bed mattress can detect early heart failure changes. Heart and respiratory rates obtained from the bed sensor of a female older adult who was hospitalized with acute mixed congestive heart failure, clinic notes, and data from computer simulations reflecting increasing diastolic dysfunction were analyzed. Mean heart and respiratory rate trends obtained from her bed sensor in the prior 2 months did not indicate heart failure. BCG waveforms resulting from the simulations demonstrated changes associated with decreasing cardiac output as diastolic function worsened. Developing new methods for clinically interpreting BCG waveforms presents a significant opportunity for improving early heart failure detection. [Journal of Gerontological Nursing, 46(7), 41-46.].
Collapse
|
21
|
Chang IS, Mak S, Armanfard N, Boger J, Grace SL, Arcelus A, Chessex C, Mihailidis A. Quantification of Resting-State Ballistocardiogram Difference Between Clinical and Non-Clinical Populations for Ambient Monitoring of Heart Failure. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2020; 8:2700811. [PMID: 33094034 PMCID: PMC7571868 DOI: 10.1109/jtehm.2020.3029690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022]
Abstract
A ballistocardiogram (BCG) is a versatile bio-signal that enables ambient remote monitoring of heart failure (HF) patients in a home setting, achieved through embedded sensors in the surrounding environment. Numerous methods of analysis are available for extracting physiological information using the BCG; however, most have been developed based on non-clinical subjects. While the difference between clinical and non-clinical populations are expected, quantification of the difference may serve as a useful tool. In this work, the differences in resting-state BCGs of the two cohorts in a sitting posture were quantified. An instrumented chair was used to collect the BCG from 29 healthy adults and 26 NYHA HF class I and II patients while seated without any stress test for five minutes. Five 20-second epochs per subject were used to calculate the waveform fluctuation metric at rest (WFMR). The WFMR was obtained in two steps. The ensemble average of the segmented BCG heartbeats within an epoch were calculated first. Mean square errors (MSE) between different ensemble average pairs were then retrieved. The MSEs were averaged to produce the WFMR. The comparison showed that the clinical cohort had higher fluctuation than the non-clinical population and had at least 82.2% separation, suggesting that greater errors may result when existing algorithms were used. The WFMR acts as a bridge that may enable important features, including the addition of error margins in parameter estimation and ways to devise a calibration strategy when resting-state BCG is unstable.
Collapse
Affiliation(s)
- Isaac Sungjae Chang
- Institute of Biomaterials and Biomedical Engineering, University of TorontoONM5S 3G9Canada
| | - Susanna Mak
- Division of CardiologyDepartment of MedicineMount Sinai HospitalTorontoONM5G 1X5Canada
| | - Narges Armanfard
- Department of Electrical and Computer EngineeringMcGill UniversityMontrealQCH3A 0G4Canada
| | - Jennifer Boger
- Department of Systems Design EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada.,Research Institute for AgingWaterlooONN2J 0E2Canada
| | - Sherry L Grace
- Faculty of HealthYork UniversityTorontoONM3J IP3Canada.,Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Amaya Arcelus
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Caroline Chessex
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Alex Mihailidis
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| |
Collapse
|
22
|
Guidoboni G, Sala L, Enayati M, Sacco R, Szopos M, Keller JM, Popescu M, Despins L, Huxley VH, Skubic M. Corrections to “Cardiovascular Function and Ballistocardiogram: A Relationship Interpreted via Mathematical Modeling” [Oct 19 2906-2917]. IEEE Trans Biomed Eng 2020; 67:3001. [DOI: 10.1109/tbme.2020.3016750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Sadek I, Heng TTS, Seet E, Abdulrazak B. A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study. J Med Internet Res 2020; 22:e18297. [PMID: 32945773 PMCID: PMC7532465 DOI: 10.2196/18297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/10/2020] [Accepted: 07/26/2020] [Indexed: 01/26/2023] Open
Abstract
Background At present, there is an increased demand for accurate and personalized patient monitoring because of the various challenges facing health care systems. For instance, rising costs and lack of physicians are two serious problems affecting the patient’s care. Nonintrusive monitoring of vital signs is a potential solution to close current gaps in patient monitoring. As an example, bed-embedded ballistocardiogram (BCG) sensors can help physicians identify cardiac arrhythmia and obstructive sleep apnea (OSA) nonintrusively without interfering with the patient’s everyday activities. Detecting OSA using BCG sensors is gaining popularity among researchers because of its simple installation and accessibility, that is, their nonwearable nature. In the field of nonintrusive vital sign monitoring, a microbend fiber optic sensor (MFOS), among other sensors, has proven to be suitable. Nevertheless, few studies have examined apnea detection. Objective This study aims to assess the capabilities of an MFOS for nonintrusive vital signs and sleep apnea detection during an in-lab sleep study. Data were collected from patients with sleep apnea in the sleep laboratory at Khoo Teck Puat Hospital. Methods In total, 10 participants underwent full polysomnography (PSG), and the MFOS was placed under the patient’s mattress for BCG data collection. The apneic event detection algorithm was evaluated against the manually scored events obtained from the PSG study on a minute-by-minute basis. Furthermore, normalized mean absolute error (NMAE), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were employed to evaluate the sensor capabilities for vital sign detection, comprising heart rate (HR) and respiratory rate (RR). Vital signs were evaluated based on a 30-second time window, with an overlap of 15 seconds. In this study, electrocardiogram and thoracic effort signals were used as references to estimate the performance of the proposed vital sign detection algorithms. Results For the 10 patients recruited for the study, the proposed system achieved reasonable results compared with PSG for sleep apnea detection, such as an accuracy of 49.96% (SD 6.39), a sensitivity of 57.07% (SD 12.63), and a specificity of 45.26% (SD 9.51). In addition, the system achieved close results for HR and RR estimation, such as an NMAE of 5.42% (SD 0.57), an NRMSE of 6.54% (SD 0.56), and an MAPE of 5.41% (SD 0.58) for HR, whereas an NMAE of 11.42% (SD 2.62), an NRMSE of 13.85% (SD 2.78), and an MAPE of 11.60% (SD 2.84) for RR. Conclusions Overall, the recommended system produced reasonably good results for apneic event detection, considering the fact that we are using a single-channel BCG sensor. Conversely, satisfactory results were obtained for vital sign detection when compared with the PSG outcomes. These results provide preliminary support for the potential use of the MFOS for sleep apnea detection.
Collapse
Affiliation(s)
- Ibrahim Sadek
- AMI-Lab, Computer Science Department, Faculty of Science, University of Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, Sherbrooke, QC, Canada.,Biomedical Engineering Dept, Faculty of Engineering, Helwan University, Helwan, Cairo, Egypt
| | - Terry Tan Soon Heng
- Department of Otolaryngology, Woodlands Health Campus and Khoo Teck Puat Hospital, Singapore, Singapore
| | - Edwin Seet
- Department of Anaesthesia, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Bessam Abdulrazak
- AMI-Lab, Computer Science Department, Faculty of Science, University of Sherbrooke, Sherbrooke, QC, Canada.,Research Centre on Aging, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Shin S, Yousefian P, Mousavi AS, Kim CS, Mukkamala R, Jang DG, Ko BH, Lee J, Kwon UK, Kim YH, Hahn JO. A Unified Approach to Wearable Ballistocardiogram Gating and Wave Localization. IEEE Trans Biomed Eng 2020; 68:1115-1122. [PMID: 32746068 DOI: 10.1109/tbme.2020.3010864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Toward the ultimate goal of cuff-less blood pressure (BP) trend tracking via pulse transit time (PTT) using wearable ballistocardiogram (BCG) signals, we present a unified approach to the gating of wearable BCG and the localization of wearable BCG waves. METHODS We present a unified approach to localize wearable BCG waves suited to various gating and localization reference signals. Our approach gates individual wearable BCG beats and identifies candidate waves in each wearable BCG beat using a fiducial point in a reference signal, and exploits a pre-specified probability distribution of the time interval between the BCG wave and the fiducial point in the reference signal to accurately localize the wave in each wearable BCG beat. We tested the validity of our approach using experimental data collected from 17 healthy volunteers. RESULTS We showed that our approach could localize the J wave in the wearable wrist BCG accurately with both the electrocardiogram (ECG) and the wearable wrist photoplethysmogram (PPG) signals as reference, and that the wrist BCG-PPG PTT thus derived exhibited high correlation to BP. CONCLUSION We demonstrated the proof-of-concept of a unified approach to localize wearable BCG waves suited to various gating and localization reference signals compatible with wearable measurement. SIGNIFICANCE Prior work using the BCG itself or the ECG to gate the BCG beats and localize the waves to compute PTT are not ideally suited to the wearable BCG. Our approach may foster the development of cuff-less BP monitoring technologies based on the wearable BCG.
Collapse
|
25
|
A Unified Methodology for Heartbeats Detection in Seismocardiogram and Ballistocardiogram Signals. COMPUTERS 2020. [DOI: 10.3390/computers9020041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work presents a methodology to analyze and segment both seismocardiogram (SCG) and ballistocardiogram (BCG) signals in a unified fashion. An unsupervised approach is followed to extract a template of SCG/BCG heartbeats, which is then used to fine-tune temporal waveform annotation. Rigorous performance assessment is conducted in terms of sensitivity, precision, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of annotation. The methodology is tested on four independent datasets, covering different measurement setups and time resolutions. A wide application range is therefore explored, which better characterizes the robustness and generality of the method with respect to a single dataset. Overall, sensitivity and precision scores are uniform across all datasets ( p > 0.05 from the Kruskal–Wallis test): the average sensitivity among datasets is 98.7%, with 98.2% precision. On the other hand, a slight yet significant difference in RMSE and MAE scores was found ( p < 0.01 ) in favor of datasets with higher sampling frequency. The best RMSE scores for SCG and BCG are 4.5 and 4.8 ms, respectively; similarly, the best MAE scores are 3.3 and 3.6 ms. The results were compared to relevant recent literature and are found to improve both detection performance and temporal annotation errors.
Collapse
|
26
|
Xing X, Ma Z, Zhang M, Gao X, Li Y, Song M, Dong WF. Robust blood pressure estimation from finger photoplethysmography using age-dependent linear models. Physiol Meas 2020; 41:025007. [DOI: 10.1088/1361-6579/ab755d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Hersek S, Semiz B, Shandhi MMH, Orlandic L, Inan OT. A Globalized Model for Mapping Wearable Seismocardiogram Signals to Whole-Body Ballistocardiogram Signals Based on Deep Learning. IEEE J Biomed Health Inform 2019; 24:1296-1309. [PMID: 31369391 DOI: 10.1109/jbhi.2019.2931872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ballistocardiography (BCG) signal is a measurement of the vibrations of the center of mass of the body due to the cardiac cycle and can be used for noninvasive hemodynamic monitoring. The seismocardiography (SCG) signals measure the local vibrations of the chest wall due to the cardiac cycle. While BCG is a more well-known modality, it requires the use of a modified bathroom scale or a force plate and cannot be measured in a wearable setting, whereas SCG signals can be measured using wearable accelerometers placed on the sternum. In this paper, we explore the idea of finding a mapping between zero mean and unit l2-norm SCG and BCG signal segments such that, the BCG signal can be acquired using wearable accelerometers (without retaining amplitude information). We use neural networks to find such a mapping and make use of the recently introduced UNet architecture. We trained our models on 26 healthy subjects and tested them on ten subjects. Our results show that we can estimate the aforementioned segments of the BCG signal with a median Pearson correlation coefficient of 0.71 and a median absolute deviation (MAD) of 0.17. Furthermore, our model can estimate the R-I, R-J and R-K timing intervals with median absolute errors (and MAD) of 10.00 (8.90), 6.00 (5.93), and 8.00 (5.93), respectively. We show that using all three axis of the SCG accelerometer produces the best results, whereas the head-to-foot SCG signal produces the best results when a single SCG axis is used.
Collapse
|