1
|
Arrow C, Ward M, Eshraghian J, Dwivedi G. Capturing the pulse: a state-of-the-art review on camera-based jugular vein assessment. BIOMEDICAL OPTICS EXPRESS 2023; 14:6470-6492. [PMID: 38420308 PMCID: PMC10898581 DOI: 10.1364/boe.507418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 03/02/2024]
Abstract
Heart failure is associated with a rehospitalisation rate of up to 50% within six months. Elevated central venous pressure may serve as an early warning sign. While invasive procedures are used to measure central venous pressure for guiding treatment in hospital, this becomes impractical upon discharge. A non-invasive estimation technique exists, where the clinician visually inspects the pulsation of the jugular veins in the neck, but it is less reliable due to human limitations. Video and signal processing technologies may offer a high-fidelity alternative. This state-of-the-art review analyses existing literature on camera-based methods for jugular vein assessment. We summarize key design considerations and suggest avenues for future research. Our review highlights the neck as a rich imaging target beyond the jugular veins, capturing comprehensive cardiac signals, and outlines factors affecting signal quality and measurement accuracy. Addressing an often quoted limitation in the field, we also propose minimum reporting standards for future studies.
Collapse
Affiliation(s)
- Coen Arrow
- School of Medicine, University of Western Australia, Perth, Australia
- Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Australia
| | - Max Ward
- Department of Computer Science and Software Engineering, University of Western Australia, Perth, Australia
| | - Jason Eshraghian
- Department of Electrical and Computer Engineering, University of California (Santa Cruz), California, USA
| | - Girish Dwivedi
- School of Medicine, University of Western Australia, Perth, Australia
- Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
| |
Collapse
|
2
|
Casado CA, Lopez MB. Face2PPG: An Unsupervised Pipeline for Blood Volume Pulse Extraction From Faces. IEEE J Biomed Health Inform 2023; 27:5530-5541. [PMID: 37610907 DOI: 10.1109/jbhi.2023.3307942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Photoplethysmography (PPG) signals have become a key technology in many fields, such as medicine, well-being, or sports. Our work proposes a set of pipelines to extract remote PPG signals (rPPG) from the face robustly, reliably, and configurably. We identify and evaluate the possible choices in the critical steps of unsupervised rPPG methodologies. We assess a state-of-the-art processing pipeline in six different datasets, incorporating important corrections in the methodology that ensure reproducible and fair comparisons. In addition, we extend the pipeline by proposing three novel ideas; 1) a new method to stabilize the detected face based on a rigid mesh normalization; 2) a new method to dynamically select the different regions in the face that provide the best raw signals, and 3) a new RGB to rPPG transformation method, called Orthogonal Matrix Image Transformation (OMIT) based on QR decomposition, that increases robustness against compression artifacts. We show that all three changes introduce noticeable improvements in retrieving rPPG signals from faces, obtaining state-of-the-art results compared with unsupervised, non-learning-based methodologies and, in some databases, very close to supervised, learning-based methods. We perform a comparative study to quantify the contribution of each proposed idea. In addition, we depict a series of observations that could help in future implementations.
Collapse
|
3
|
For Heart Rate Assessments from Drone Footage in Disaster Scenarios. Bioengineering (Basel) 2023; 10:bioengineering10030336. [PMID: 36978727 PMCID: PMC10045207 DOI: 10.3390/bioengineering10030336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The ability to use drones to obtain important vital signs could be very valuable for emergency personnel during mass-casualty incidents. The rapid and robust remote assessment of heart rates could serve as a life-saving decision aid for first-responders. With the flight sensor data of a specialized drone, a pipeline was developed to achieve a robust, non-contact assessment of heart rates through remote photoplethysmography (rPPG). This robust assessment was achieved through adaptive face-aware exposure and comprehensive de-noising of a large number of predicted noise sources. In addition, we performed a proof-of-concept study that involved 18 stationary subjects with clean skin and 36 recordings of their vital signs, using the developed pipeline in outdoor conditions. In this study, we could achieve a single-value heart-rate assessment with an overall root-mean-squared error of 14.3 beats-per-minute, demonstrating the basic feasibility of our approach. However, further research is needed to verify the applicability of our approach in actual disaster situations, where remote photoplethysmography readings could be impacted by other factors, such as blood, dirt, and body positioning.
Collapse
|
4
|
Selvaraju V, Spicher N, Swaminathan R, Deserno TM. Unobtrusive Heart Rate Monitoring using Near-Infrared Imaging During Driving. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2967-2971. [PMID: 36085768 DOI: 10.1109/embc48229.2022.9871416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In-vehicle health monitoring allows for continuous vital sign measurement in everyday life. Eventually, this could lead to early detection of cardiovascular diseases. In this work, we propose non-contact heart rate (HR) monitoring utilizing near-infrared (NIR) camera technology. Ten healthy volunteers are monitored in a realistic driving simulator during resting (5 min) and driving (10 min). We synchronously acquire videos using an out-of-the-shelf, low-cost NIR camera and 3-lead electrocardiography (ECG) serves as ground truth. The MediaPipe face detector delivers the region of interest (ROI) and we determine the HR from the peak with maximum amplitude within the power spectrum of skin color changes. We compare video-based with ECG-based HR, resulting in a mean absolute error (MAE) of 7.8 bpm and 13.0 bpm in resting and driving condition, respectively. As we apply only a simple signal processing pipeline without sophisticated filtering, we conclude that NIR camera-based HR measurements enables unobtrusive and non-contact monitoring to a certain extent, but artifacts from subject movement pose a challenge. If these issues can be addressed, continuous vital sign measurement in everyday life could become reality.
Collapse
|
5
|
Selvaraju V, Spicher N, Wang J, Ganapathy N, Warnecke JM, Leonhardt S, Swaminathan R, Deserno TM. Continuous Monitoring of Vital Signs Using Cameras: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:4097. [PMID: 35684717 PMCID: PMC9185528 DOI: 10.3390/s22114097] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
Abstract
In recent years, noncontact measurements of vital signs using cameras received a great amount of interest. However, some questions are unanswered: (i) Which vital sign is monitored using what type of camera? (ii) What is the performance and which factors affect it? (iii) Which health issues are addressed by camera-based techniques? Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement, we conduct a systematic review of continuous camera-based vital sign monitoring using Scopus, PubMed, and the Association for Computing Machinery (ACM) databases. We consider articles that were published between January 2018 and April 2021 in the English language. We include five vital signs: heart rate (HR), respiratory rate (RR), blood pressure (BP), body skin temperature (BST), and oxygen saturation (SpO2). In total, we retrieve 905 articles and screened them regarding title, abstract, and full text. One hundred and four articles remained: 60, 20, 6, 2, and 1 of the articles focus on HR, RR, BP, BST, and SpO2, respectively, and 15 on multiple vital signs. HR and RR can be measured using red, green, and blue (RGB) and near-infrared (NIR) as well as far-infrared (FIR) cameras. So far, BP and SpO2 are monitored with RGB cameras only, whereas BST is derived from FIR cameras only. Under ideal conditions, the root mean squared error is around 2.60 bpm, 2.22 cpm, 6.91 mm Hg, 4.88 mm Hg, and 0.86 °C for HR, RR, systolic BP, diastolic BP, and BST, respectively. The estimated error for SpO2 is less than 1%, but it increases with movements of the subject and the camera-subject distance. Camera-based remote monitoring mainly explores intensive care, post-anaesthesia care, and sleep monitoring, but also explores special diseases such as heart failure. The monitored targets are newborn and pediatric patients, geriatric patients, athletes (e.g., exercising, cycling), and vehicle drivers. Camera-based techniques monitor HR, RR, and BST in static conditions within acceptable ranges for certain applications. The research gaps are large and heterogeneous populations, real-time scenarios, moving subjects, and accuracy of BP and SpO2 monitoring.
Collapse
Affiliation(s)
- Vinothini Selvaraju
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
- Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Nicolai Spicher
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| | - Ju Wang
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| | - Nagarajan Ganapathy
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| | - Joana M. Warnecke
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| | - Steffen Leonhardt
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Ramakrishnan Swaminathan
- Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Thomas M. Deserno
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Germany; (V.S.); (N.S.); (J.W.); (N.G.); (J.M.W.)
| |
Collapse
|
6
|
Woyczyk A, Fleischhauer V, Zaunseder S. Adaptive Gaussian Mixture Model Driven Level Set Segmentation for Remote Pulse Rate Detection. IEEE J Biomed Health Inform 2021; 25:1361-1372. [PMID: 33497347 DOI: 10.1109/jbhi.2021.3054779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents an approach for pulse rate extraction from videos. The core of the presented approach is a novel method to segment and track a suitable region of interest (ROI). The proposed method combines level sets with subject-individual Gaussian Mixture Models to yield a time varying ROI. The ROI builds up from multiple homogeneous skin areas under constraints regarding the area and contour length of the ROI. Together with state of the art signal processing methods our approach yields an Mean Average Error (MAE) of 2.3 bpm, 1.4 bpm and 2.7 bpm on own data, the PURE database and the UBFC-rPPG database, respectively. Therewith, our method performs equal or better compared to widely used approaches (e.g. the KLT tracker instead of the proposed image processing yields an MAE of 2.6 bpm, 2.6 bpm and 4.4 bpm). Such results and the 2nd place with a MAE of 7.92 bpm in the 1st Challenge on Remote Physiological Signal Sensing prove the applicability of the proposed method. The taken approach, however, bears further potential for optimization in the context of photoplethysmography imaging and should be transferable to other segmentation tasks as well.
Collapse
|
7
|
Guo Y, Liu X, Peng S, Jiang X, Xu K, Chen C, Wang Z, Dai C, Chen W. A review of wearable and unobtrusive sensing technologies for chronic disease management. Comput Biol Med 2021; 129:104163. [PMID: 33348217 PMCID: PMC7733550 DOI: 10.1016/j.compbiomed.2020.104163] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022]
Abstract
With the rapidly increasing number of patients with chronic disease, numerous recent studies have put great efforts into achieving long-term health monitoring and patient management. Specifically, chronic diseases including cardiovascular disease, chronic respiratory disease and brain disease can threaten patients' health conditions over a long period of time, thus effecting their daily lives. Vital health parameters, such as heart rate, respiratory rate, SpO2 and blood pressure, are closely associated with patients’ conditions. Wearable devices and unobtrusive sensing technologies can detect such parameters in a convenient way and provide timely predictions on health condition deterioration by tracking these biomedical signals and health parameters. In this paper, we review current advancements in wearable devices and unobtrusive sensing technologies that can provides possible tools and technological supports for chronic disease management. Current challenges and future directions of related techniques are addressed accordingly.
Collapse
Affiliation(s)
- Yao Guo
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xiangyu Liu
- School of Art Design and Media, East China University of Science and Technology, Shanghai, 200237, China
| | - Shun Peng
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xinyu Jiang
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ke Xu
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Chen Chen
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zeyu Wang
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Chenyun Dai
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| | - Wei Chen
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Nowara EM, McDuff D, Veeraraghavan A. Systematic analysis of video-based pulse measurement from compressed videos. BIOMEDICAL OPTICS EXPRESS 2021; 12:494-508. [PMID: 33659085 PMCID: PMC7899506 DOI: 10.1364/boe.408471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Camera-based physiological measurement enables vital signs to be captured unobtrusively without contact with the body. Remote, or imaging, photoplethysmography involves recovering peripheral blood flow from subtle variations in video pixel intensities. While the pulse signal might be easy to obtain from high quality uncompressed videos, the signal-to-noise ratio drops dramatically with video bitrate. Uncompressed videos incur large file storage and data transfer costs, making analysis, manipulation and sharing challenging. To help address these challenges, we use compression specific supervised models to mitigate the effect of temporal video compression on heart rate estimates. We perform a systematic evaluation of the performance of state-of-the-art algorithms across different levels, and formats, of compression. We demonstrate that networks trained on compressed videos consistently outperform other benchmark methods, both on stationary videos and videos with significant rigid head motions. By training on videos with the same, or higher compression factor than test videos, we achieve improvements in signal-to-noise ratio (SNR) of up to 3 dB and mean absolute error (MAE) of up to 6 beats per minute (BPM).
Collapse
Affiliation(s)
- Ewa M. Nowara
- Electrical and Computer Engineering Department, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Daniel McDuff
- Microsoft Research AI, 14820 NE 36th St, Redmond, WA 98052, USA
| | - Ashok Veeraraghavan
- Electrical and Computer Engineering Department, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
9
|
MOMBAT: Heart rate monitoring from face video using pulse modeling and Bayesian tracking. Comput Biol Med 2020; 121:103813. [PMID: 32568683 DOI: 10.1016/j.compbiomed.2020.103813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022]
Abstract
A non-invasive yet inexpensive method for heart rate (HR) monitoring is of great importance in many real-world applications including healthcare, psychology understanding, affective computing and biometrics. Face videos are currently utilized for such HR monitoring, but unfortunately this can lead to errors due to the noise introduced by facial expressions, out-of-plane movements, camera parameters (like focus change) and environmental factors. We alleviate these issues by proposing a novel face video based HR monitoring method MOMBAT, that is, MOnitoring using Modeling and BAyesian Tracking. We utilize out-of-plane face movements to define a novel quality estimation mechanism. Subsequently, we introduce a Fourier basis based modeling to reconstruct the cardiovascular pulse signal at the locations containing the poor quality, that is, the locations affected by out-of-plane face movements. Furthermore, we design a Bayesian decision theory based HR tracking mechanism to rectify the spurious HR estimates. Experimental results reveal that our proposed method, MOMBAT outperforms state-of-the-art HR monitoring methods and performs HR monitoring with an average absolute error of 1.329 beats per minute and the Pearson correlation between estimated and actual heart rate is 0.9746. Moreover, it demonstrates that HR monitoring is significantly improved by incorporating the pulse modeling and HR tracking.
Collapse
|
10
|
Henry J, Rodriguez A, Wlodkowic D. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology. PeerJ 2019; 7:e7367. [PMID: 31404436 PMCID: PMC6686839 DOI: 10.7717/peerj.7367] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
Chemobehavioural phenotypic analysis using small aquatic model organisms is becoming an important toolbox in aquatic ecotoxicology and neuroactive drug discovery. The analysis of the organisms’ behavior is usually performed by combining digital video recording with animal tracking software. This software detects the organisms in the video frames, and reconstructs their movement trajectory using image processing algorithms. In this work we investigated the impact of video file characteristics, video optimization techniques and differences in animal tracking algorithms on the accuracy of quantitative neurobehavioural endpoints. We employed larval stages of a free-swimming euryhaline crustacean Artemia franciscana,commonly used for marine ecotoxicity testing, as a proxy modelto assess the effects of video analytics on quantitative behavioural parameters. We evaluated parameters such as data processing speed, tracking precision, capability to perform high-throughput batch processing of video files. Using a model toxicant the software algorithms were also finally benchmarked against one another. Our data indicates that variability in video file parameters; such as resolution, frame rate, file containers types, codecs and compression levels, can be a source of experimental biases in behavioural analysis. Similarly, the variability in data outputs between different tracking algorithms should be taken into account when designing standardized behavioral experiments and conducting chemobehavioural phenotyping.
Collapse
Affiliation(s)
- Jason Henry
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Alvaro Rodriguez
- Biomedical Research Institute A Coruña (INIBIC), University Hospital Complex of A Coruña, Coruña, Spain.,Department of Computer Science, University of A Coruña, Spain
| | | |
Collapse
|