8
|
Yildirim DK, Bruce C, Uzun D, Rogers T, O'Brien K, Ramasawmy R, Campbell-Washburn A, Herzka DA, Lederman RJ, Kocaturk O. A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.55T. Magn Reson Med 2021; 86:1786-1801. [PMID: 33860962 DOI: 10.1002/mrm.28804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE This work aims to fabricate RF antenna components on metallic needle surfaces using biocompatible polyester tubing and conductive ink to develop an active interventional MRI needle for clinical use at 0.55 Tesla. METHODS A custom computer numeric control-based conductive ink printing method was developed. Based on electromagnetic simulation results, thin-film RF antennas were printed with conductive ink and used to fabricate a medical grade, 20-gauge (0.87 mm outer diameter), 90-mm long active interventional MRI needle. The MRI visibility performance of the active needle prototype was tested in vitro in 1 gel phantom and in vivo in 1 swine. A nearly identical active needle constructed using a 44 American Wire Gauge insulated copper wire-wound RF receiver antenna was a comparator. The RF-induced heating risk was evaluated in a gel phantom per American Society for Testing and Materials (ASTM) 2182-19. RESULTS The active needle prototype with printed RF antenna was clearly visible both in vitro and in vivo under MRI. The maximum RF-induced temperature rise of prototypes with printed RF antenna and insulated copper wire antenna after a 3.96 W/kg, 15 min. long scan were 1.64°C and 8.21°C, respectively. The increase in needle diameter was 98 µm and 264 µm for prototypes with printed RF antenna and copper wire-wound antenna, respectively. CONCLUSION The active needle prototype with conductive ink printed antenna provides distinct device visibility under MRI. Variations on the needle surface are mitigated compared to use of a 44 American Wire Gauge copper wire. RF-induced heating tests support device RF safety under MRI. The proposed method enables fabrication of small diameter active interventional MRI devices having complex geometries, something previously difficult using conventional methods.
Collapse
Affiliation(s)
- Dursun Korel Yildirim
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Istanbul, Turkey.,Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dogangun Uzun
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Istanbul, Turkey.,Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Toby Rogers
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kendall O'Brien
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrienne Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Istanbul, Turkey.,Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Narsinh KH, Kilbride BF, Mueller K, Murph D, Copelan A, Massachi J, Vitt J, Sun CH, Bhat H, Amans MR, Dowd CF, Halbach VV, Higashida RT, Moore T, Wilson MW, Cooke DL, Hetts SW. Combined Use of X-ray Angiography and Intraprocedural MRI Enables Tissue-based Decision Making Regarding Revascularization during Acute Ischemic Stroke Intervention. Radiology 2021; 299:167-176. [PMID: 33560189 DOI: 10.1148/radiol.2021202750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background For patients with acute ischemic stroke undergoing endovascular mechanical thrombectomy with x-ray angiography, the use of adjuncts to maintain vessel patency, such as stents or antiplatelet medications, can increase risk of periprocedural complications. Criteria for using these adjuncts are not well defined. Purpose To evaluate use of MRI to guide critical decision making by using a combined biplane x-ray neuroangiography 3.0-T MRI suite during acute ischemic stroke intervention. Materials and Methods This retrospective observational study evaluated consecutive patients undergoing endovascular intervention for acute ischemic stroke between July 2019 and May 2020 who underwent either angiography with MRI or angiography alone. Cerebral tissue viability was assessed by using MRI as the reference standard. For statistical analysis, Fisher exact test and Student t test were used to compare groups. Results Of 47 patients undergoing acute stroke intervention, 12 patients (median age, 69 years; interquartile range, 60-77 years; nine men) underwent x-ray angiography with MRI whereas the remaining 35 patients (median age, 80 years; interquartile range, 68-86 years; 22 men) underwent angiography alone. MRI results influenced clinical decision making in one of three ways: whether or not to perform initial or additional mechanical thrombectomy, whether or not to place an intracranial stent, and administration of antithrombotic or blood pressure medications. In this initial experience, decision making during endovascular acute stroke intervention in the combined angiography-MRI suite was better informed at MRI, such that therapy was guided in real time by the viability of the at-risk cerebral tissue. Conclusion Integrating intraprocedural 3.0-T MRI into acute ischemic stroke treatment was feasible and guided decisions of whether or not to continue thrombectomy, to place stents, or to administer antithrombotic medication or provide blood pressure medications. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lev and Leslie-Mazwi in this issue.
Collapse
Affiliation(s)
- Kazim H Narsinh
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Bridget F Kilbride
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Kerstin Mueller
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Daniel Murph
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Alexander Copelan
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Jonathan Massachi
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Jeffrey Vitt
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Chung-Huan Sun
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Himanshu Bhat
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Matthew R Amans
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Christopher F Dowd
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Van V Halbach
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Randall T Higashida
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Terilyn Moore
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Mark W Wilson
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Daniel L Cooke
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| | - Steven W Hetts
- From the Department of Radiology & Biomedical Imaging, Division of Interventional Neuroradiology (K.H.N., B.F.K., D.M., A.C., J.M., M.R.A., C.F.D., V.V.H., R.T.H., T.M., M.W.W., D.L.C., S.W.H.), and Department of Neurology (J.V., C.H.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628; and Siemens Medical Solutions, Malvern, Pa (K.M., H.B.)
| |
Collapse
|