1
|
Lebar AM, Potočnik T, Ščančar J, Marković S, Polajžer T. Bystander effect of metal byproducts released from electroporated cells after electroporation in vitro. Bioelectrochemistry 2025; 164:108940. [PMID: 39954332 DOI: 10.1016/j.bioelechem.2025.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Electrodes dissolution during electroporation releases metal ions into the medium, altering the microenvironment of electroporated cells and allowing metal ions to penetrate cell membrane. During cell membrane repair, homeostasis restoration or activation of cell death pathways, cells eliminate excess metals from the cytoplasm and membrane. This study assessed the effects of post-electroporation metal byproducts on untreated (non-electroporated) cells in vitro. CHO and HCT116 cells were electroporated with three pulse protocols (unipolar: 100 μs, 5 ms; bipolar: 2 μs) using either aluminum or stainless-steel electrodes. After electroporation, cells were transferred to fresh growth medium and incubated for 2 or 4 h. Incubation period allowed either cell recovery or the activation of cell death pathways, leading to the accumulation of metal byproducts in the incubation medium. Stainless-steel electrodes with the 5 ms pulse protocol caused a considerable increase in iron, chromium and nickel ions in incubation medium compared to aluminum electrodes or other protocols. Metal ions in incubation medium caused toxicity in non-electroporated cells, disrupting cell cycle function or inducing cell death. The observed toxicity results from combined effects of metal ions on cellular functions and the mechanisms the cells use to protect themselves from metal overload.
Collapse
Affiliation(s)
- Alenka Maček Lebar
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25 1000 Ljubljana, Slovenia.
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25 1000 Ljubljana, Slovenia
| | - Janez Ščančar
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39 1000 Ljubljana, Slovenia
| | - Stefan Marković
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39 1000 Ljubljana, Slovenia
| | - Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Wang Y, Qian K, Liu X, Yang Q, Lei Y, Zhu L, Yao C, Zhou Q, Liu H, Dong S. Synergistic Bipolar Irreversible Electroporation for Tumor Ablation Without Muscle Contraction. IEEE Trans Biomed Eng 2024; 71:3505-3514. [PMID: 39028604 DOI: 10.1109/tbme.2024.3431013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Irreversible electroporation (IRE) has emerged as a promising modality for tumor ablation, leveraging the controlled application of electrical pulses to induce cell death. However, the associated muscle contractions during the procedure pose challenges. This study introduces a novel approach, termed Synergistic Bipolar Irreversible Electroporation (SBIRE), aimed at achieving tumor ablation without the undesirable side effect of muscle contraction. SBIRE involves the simultaneous application of nanosecond bipolar electrical pulses (±1600 V per 0.2 cm or ±8000 V per 1 cm, ±500 ns, "+" to "-" delay 1 µs, "-" to "+" delay 200 µs, 5 cycles) and microsecond bipolar electrical pulses (±300 V per 0.2 cm or ±1500 V per 1 cm, ±2 µs, "+" to "-" delay 2 µs, "-" to "+" delay 1000 µs, 25 cycles), strategically designed to synergistically target tumor cells while minimizing the impact on adjacent muscle tissue. The experimental setup includes in vitro and in vivo studies utilizing tumor cells and animal models to assess the efficacy of SBIRE. Preliminary results demonstrate the effectiveness of SBIRE in inducing irreversible electroporation within the tumor, leading to cell death, and the ablation effect is better than other parameter forms (24.41 ± 0.23 mm2 (SBIRE group) vs 12.93 ± 0.31 mm2 (ns group), 6.55 ± 0.23 mm2 (µs group), 19.54 ± 0.25 mm2 (ns+µs group), p<0.0001). Notably, muscle contraction is significantly reduced compared to traditional IRE procedures, highlighting the potential of SBIRE to enhance patient comfort and procedural success. The development of SBIRE represents a significant advancement in the field of tumor ablation, addressing a fundamental limitation associated with muscle contraction during IRE. This technique not only offers a valuable and promising approach to tumor treatment but also holds promise for minimizing procedural side effects.
Collapse
|
3
|
Lv Y, Feng Z, Liu X, Zhang J, Yao C. The Enhancement of Tumor Ablation Effect by the Combination of High-Frequency and Low-Voltage Bipolar Electroporation Pulses. IEEE Trans Biomed Eng 2024; 71:1577-1586. [PMID: 38113160 DOI: 10.1109/tbme.2023.3344153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The H-FIRE (high-frequency irreversible electroporation) protocol employs high-frequency bipolar pulses (HFBPs) with a width of ∼1 µs for tumor ablation with slight muscle contraction. However, H-FIRE pulses need a higher electric field to generate a sufficient ablation effect, which may cause undesirable thermal damage. OBJECTIVE Recently, combining short high-voltage IRE monopolar pulses with long low-voltage IRE monopolar pulses was shown to enlarge the ablation region. This finding indicates that combining HFBPs with low-voltage bipolar pulses (LVBPs), which are called composited bipolar pulses (CBPs), may enhance the ablation effect. METHODS This study designed a pulse generator by modifying a full-bridge inverter. The cell suspension and 3D tumor mimic experiments (U251 cells) were performed to examine the enhancement of the ablation effect. RESULTS The generator outputs HFBPs with 0-±2.5 kV and LVBPs with 0-±0.3 kV in one period. The pulse parameters are adjustable by programming on a human-computer interface. The cell suspension experiments showed that CBPs could enhance cytotoxicity, as compared to HFBPs with no cell-killing effect. Even at lower electric energy, the cell viability by CBPs was significantly lower than that of the HFBPs protocol. The ablation experiments on the 3D tumor mimic showed that the CBPs could create a larger connected ablation area. In contrast, the HFBPs protocol with a similar dose generated a nonconnected ablation area. CONCLUSION Results indicate that the CBPs protocol can enhance the ablation effect of HFBPs protocol. SIGNIFICANCE This proposed generator that uses the CBPs principle may be a useful tool for tumor ablation.
Collapse
|
4
|
Lv Y, Liu H, Feng Z, Zhang J, Chen G, Yao C. The Enlargement of Ablation Area by Electrolytic Irreversible Electroporation (E-IRE) Using Pulsed Field with Bias DC Field. Ann Biomed Eng 2022; 50:1964-1973. [PMID: 35852648 DOI: 10.1007/s10439-022-03017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 12/30/2022]
Abstract
Irreversible electroporation (IRE) by high-strength electric pulses is a biomedical technique that has been effectively used for minimally invasive tumor therapy while maintaining the functionality of adjacent important tissues, such as blood vessels and nerves. In general, pulse delivery using needle electrodes can create a reversible electroporation region beyond both the ablation area and the vicinity of the needle electrodes, limiting enlargement of the ablation area. Electrochemical therapy (EChT) can also be used to ablate a tumor near electrodes by electrolysis using a direct field with a constant current or voltage (DC field). Recently, reversible electroporated cells have been shown to be susceptible to electrolysis at relatively low doses. Reversible electroporation can also be combined with electrolysis for tissue ablation. Therefore, the objective of this study is to use electrolysis to remove the reversible electroporation area and thereby enlarge the ablation area in potato slices in vitro using a pulsed field with a bias DC field (constant voltage). We call this protocol electrolytic irreversible electroporation (E-IRE). The area over which the electrolytic effect induced a pH change was also measured. The results show that decreasing the pulse frequency using IRE alone is found to enlarge the ablation area. The ablation area generated by E-IRE is significantly larger than that generated by using IRE or EChT alone. The ablation area generated by E-IRE at 1 Hz is 109.5% larger than that generated by IRE, showing that the reversible electroporation region is transformed into an ablation region by electrolysis. The area with a pH change produced by E-IRE is larger than that produced by EChT alone. Decreasing the pulse frequency in the E-IRE protocol can further enlarge the ablation area. The results of this study are a preliminary indication that the E-IRE protocol can effectively enlarge the ablation area and enhance the efficacy of traditional IRE for use in ablating large tumors.
Collapse
Affiliation(s)
- Yanpeng Lv
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Heqing Liu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhikui Feng
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianhua Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Genyong Chen
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenguo Yao
- School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
5
|
Lv Y, Feng Z, Chen S, Cheng X, Zhang J, Yao C. A fundamental theoretical study on the different effect of electroporation on tumor blood vessels and normal blood vessels. Bioelectrochemistry 2022; 144:108010. [PMID: 34902663 DOI: 10.1016/j.bioelechem.2021.108010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022]
Abstract
Electroporation achieved by the application of pulsed electric field is successfully used for clinical tumor ablation. Electrochemotherapy (ECT) and irreversible electroporation (IRE), which are two protocols based on electroporation, have been shown to ablate only tumor cells while preserving the function of normal blood vessels. However, the mechanism of this unique advantage is still not fully understood. This study first built a multilayer dielectric model of both normal and tumor blood vessels to study the electroporation effect. Since endothelial cells are the main component of normal and tumor blood vessels, this study mainly analyzed the electroporation effect on endothelial cells. The rich vascular smooth muscle cells (VSMCs), could play a protective function, allowing endothelial cells to suffer less electroporation effect in normal blood vessels. Interestingly, the endothelial cells in tumor blood vessel sustained a stronger electroporation effect than those in normal blood vessels due to the lack of VSMCs. This study may provide a conceivable explanation for why the structure of endothelial cells in normal blood vessels is preserved during electroporation treatment. This study also demonstrates that ECT or IRE may also damage both tumor blood vessels and cells while preserving normal blood vessels, which benefits complete tumor ablation.
Collapse
Affiliation(s)
- Yanpeng Lv
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhikui Feng
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shuo Chen
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xian Cheng
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianhua Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Chenguo Yao
- School of Electrical Engineering, Chongqing University, Chongqing, 400044 China
| |
Collapse
|
6
|
Petrella RA, Levit SL, Fesmire CC, Tang C, Sano MB. Polymer Nanoparticles Enhance Irreversible Electroporation In Vitro. IEEE Trans Biomed Eng 2022; 69:2353-2362. [PMID: 35025737 DOI: 10.1109/tbme.2022.3143084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Expanding the volume of an irreversible electroporation treatment typically necessitates an increase in pulse voltage, number, duration, or repetition. This study investigates the addition of polyethylenimine nanoparticles (PEI-NP) to pulsed electric field treatments, determining their combined effect on ablation size and voltages. U118 cells in an in vitro 3D cell culture model were treated with one of three pulse parameters (with and without PEI-NPs) which are representative of irreversible electroporation (IRE), high frequency irreversible electroporation (H-FIRE), or nanosecond pulsed electric fields (nsPEF). The size of the ablations were compared and mapped onto an electric field model to describe the electric field required to induce cell death. Analysis was conducted to determine the role of PEI-NPs in altering media conductivity, the potential for PEI-NP degradation following pulsed electric field treatment, and PEI-NP uptake. Results show there was a statistically significant increase in ablation diameter for IRE and H-FIRE pulses with PEI-NPs. There was no increase in ablation size for nsPEF with PEI-NPs. This all occurs with no change in cell media conductivity, no observable degradation of PEI-NPs, and moderate particle uptake. These results demonstrate the synergy of a combined cationic polymer nanoparticle and pulsed electric field treatment for the ablation of cancer cells. These results set the foundation for polymer nanoparticles engineered specifically for irreversible electroporation.
Collapse
|
7
|
Liu H, Zhao Y, Yao C, Schmelz EM, Davalos RV. Differential effects of nanosecond pulsed electric fields on cells representing progressive ovarian cancer. Bioelectrochemistry 2021; 142:107942. [PMID: 34509872 DOI: 10.1016/j.bioelechem.2021.107942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Nanosecond pulsed electric fields (nsPEFs) may induce differential effects on tumor cells from different disease stages and could be suitable for treating tumors by preferentially targeting the late-stage/highly aggressive tumor cells. In this study, we investigated the nsPEF responses of mouse ovarian surface epithelial (MOSE) cells representing progressive ovarian cancer from benign to malignant stages and highly aggressive tumor-initiating-like cells. We established the cell-seeded 3D collagen scaffolds cultured with or without Nocodazole (eliminating the influence of cell proliferation on ablation outcome) to observe the ablation effects at 3 h and 24 h after treatment and compared the corresponding thresholds obtained by numerically calculated electric field distribution. The results showed that nsPEFs induced larger ablation areas with lower thresholds as the cell progress from benign, malignant to a highly aggressive phenotype. This differential effect was not affected by the different doubling times of the cells, as apparent by similar ablation induction after a synergistic treatment of nsPEFs and Nocodazole. The result suggests that nsPEFs could induce preferential ablation effects on highly aggressive and malignant ovarian cancer cells than their benign counterparts. This study provides an experimental basis for the research on killing malignant tumor cells via electrical treatments and may have clinical implications for treating tumors and preventing tumor recurrence after treatment.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yajun Zhao
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; College of Electrical Engineering and Control Science, Nanjing Tech. University, Nanjing 211816, China
| | - Chenguo Yao
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China.
| | - Eva M Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|