1
|
Olomodosi A, Strassle Rojas S, Vu P, Lindsey BD. 2D array imaging system for mechanically-steered, forward-viewing ultrasound guidewire. ULTRASONICS 2024; 142:107398. [PMID: 39018696 PMCID: PMC11298298 DOI: 10.1016/j.ultras.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
Approximately 4 million people with peripheral artery disease (PAD) present with critical limb ischemia each year, requiring urgent revascularization to avoid loss of limb. Minimally-invasive (i.e. endovascular) revascularization is preferable due to increased recovery time and increased risk of complications associated with open surgery. However, 40% of people with PAD also have chronic total occlusions (CTOs), resulting in > 20% of revascularization procedures failing when CTOs are present. A steerable robotic guidewire with integrated forward-viewing imaging capabilities would allow the guidewire to navigate through tortuous vasculature and facilitate crossing CTOs in revascularization procedures that currently fail due to inability to route the guidewire. The robotic steering capabilities of the guidewire can be leveraged for 3D synthetic aperture imaging with a simplified, low element count, forward-viewing 2D array on the tip of the mechanically-steered guidewire. Images can then be formed using a hybrid beamforming approach, with focal delays calculated for each element on the tip of the guidewire and for each physical location to which the robotically-steered guidewire is steered. Unlike synthetic aperture imaging with a steerable guidewire having only a single element transducer, an array with even a small number of elements can allow estimation of blood flow and physiological motion in vivo. A miniature, low element count 2D array transducer with 9 total elements (3 × 3) having total dimensions of 1.5 mm × 1.5 mm was designed to operate at 17 MHz. A proof-of-concept 2D array transducer was fabricated and characterized acoustically. The developed array was then used to image a wire target, a peripheral stent, and an ex vivo porcine iliac artery. Images were formed using the described synthetic aperture beamforming strategy. Acoustic characterization showed a mean resonance frequency of 17.6 MHz and a -6 dB bandwidth of 35%. Lateral and axial resolution were 0.271 mm and 0.122 mm, respectively, and an increase in SNR of 4.8 dB was observed for the 2D array relative to the single element case. The first 2D array imaging system utilizing both mechanical and electronic steering for guidewire-based imaging was developed and demonstrated. A 2D array imaging system operating on the tip of the mechanically-steered guidewire provides improved frame rate and increases field of view relative to a single element transducer. Finally, 2D array and single element imaging were compared for introduced motion errors, with the 2D array providing a 46.1% increase in SNR, and 58.5% and 17.3% improvement in lateral and axial resolution, respectively, relative to single element guidewire imaging.
Collapse
Affiliation(s)
- Adeoye Olomodosi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, United States
| | - Stephan Strassle Rojas
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, United States
| | - Phuong Vu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, United States
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, United States; Department of Electrical and Computer Engineering, Georgia Institute of Technology, United States.
| |
Collapse
|
2
|
Sewani A, Roa CF, Zhou JJ, Alawneh Y, Quadri A, Gilliland-Rocque R, Cherin E, Dueck A, Demore C, Wright G, Tavallaei MA. The CathEye: A Forward-Looking Ultrasound Catheter for Image-Guided Cardiovascular Procedures. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:449-458. [PMID: 37643100 DOI: 10.1109/tmi.2023.3309781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Catheter based procedures are typically guided by X-Ray, which suffers from low soft tissue contrast and only provides 2D projection images of a 3D volume. Intravascular ultrasound (IVUS) can serve as a complementary imaging technique. Forward viewing catheters are useful for visualizing obstructions along the path of the catheter. The CathEye system mechanically steers a single-element transducer to generate a forward-looking surface reconstruction from an irregularly spaced 2-D scan pattern. The steerable catheter leverages an expandable frame with cables to manipulate the distal end independently of vessel tortuosity. The tip position is estimated by measuring the cable displacements and used to create surface reconstructions of the imaging workspace with the single-element transducer. CathEye's imaging capabilities were tested with an agar phantom and an ex vivo chronic total occlusion (CTO) sample while the catheter was confined to various tortuous paths. The CathEye maintained similar scan patterns regardless of path tortuosity and was able to recreate major features of the imaging targets, such as holes and extrusions. The feasibility of forward-looking IVUS with the CathEye is demonstrated in this study. The CathEye mechanism can be applied to other imaging modalities with field-of-view (FOV) limitations and represents the basis for an interventional device fully integrated with image guidance.
Collapse
|
3
|
Shin EJ, Park S, Kang S, Kim J, Chang JH. Improving the quality of ultrasound images acquired using a therapeutic transducer. ULTRASONICS 2023; 134:107063. [PMID: 37300907 DOI: 10.1016/j.ultras.2023.107063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
To enhance the effectiveness and safety of focused ultrasound (FUS) therapy, ultrasound image-based guidance and treatment monitoring are crucial. However, the use of FUS transducers for both therapy and imaging is impractical due to their low spatial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To address this issue, we propose a new method that significantly improve the quality of images obtained by a FUS transducer. The proposed method employs coded excitation to enhance SNR and Wiener deconvolution to solve the problem of low axial resolution resulting from the narrow spectral bandwidth of FUS transducers. Specifically, the method eliminates the impulse response of a FUS transducer from received ultrasound signals using Wiener deconvolution, and pulse compression is performed using a mismatched filter. Simulation and commercial phantom experiments confirmed that the proposed method significantly improves the quality of images acquired by the FUS transducer. The -6 dB axial resolution was improved 1.27 mm to 0.37 mm that was similar to the resolution achieved by the imaging transducer, i.e., 0.33 mm. SNR and CNR also increased from 16.5 dB and 0.69 to 29.1 dB and 3.03, respectively, that were also similar to those by the imaging transducer (27.8 dB and 3.16). Based on the results, we believe that the proposed method has great potential to enhance the clinical utility of FUS transducers in ultrasound image-guided therapy.
Collapse
Affiliation(s)
- Eui-Ji Shin
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Sunghun Park
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Sungwoo Kang
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea
| | - Jinwoo Kim
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea
| | - Jin Ho Chang
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea.
| |
Collapse
|
4
|
Sun H, Liu J, Wang Q, Lai C, Chi W, Niu C, Wang L, Teng Z, Shi Y, Tian P. In vivo animal study of the magnetic navigation system for capsule endoscope manipulation within the esophagus, stomach, and colorectum. Med Phys 2022; 49:6813-6823. [PMID: 36087029 DOI: 10.1002/mp.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/PURPOSES Magnetic navigation capsule endoscopy (MNCE) is considered to be an important means to realize the controllable and precise examination of capsule endoscopy (CE) in the unstructured gastrointestinal (GI) tract. For the current magnetic navigation system (MNS), due to the limitation of workspace, driving force, and control method of the CE, only clinical application in the stomach has been realized, whereas the examination of other parts of the GI tract is still in the experimental stage. More preclinical studies are needed to achieve the multisite examination of the GI tract. METHODS Based on the MNS (Supiee) developed in the laboratory, an X-ray imaging system with magnetic shielding and a commercial CE are integrated to form the MNCE system. Then, in vivo GI tract experiments with a porcine model are performed to verify the clinical feasibility and safety of this system. Moreover, the effects of different control modes on the efficiency and effect of GI tract examination are studied. RESULTS Animal experiments demonstrate that with the MNCE system, it is convenient to achieve steering control in any direction and multiple reciprocating movements of CE in the GI tract. Benefiting from the flexibility of the three basic control modes, the achieved swing movement pattern of CE can effectively reduce the inspection time. It is demonstrated that the esophageal examination time can be reduced from 13.2 to 9.2 min with a maximum movement speed of 5 mm/s. CONCLUSION In this paper, the feasibility, safety, and efficacy of the MNCE system for a one-stop examination of the in vivo GI tract (esophagus, stomach, and colorectum) is first demonstrated. In addition, complex movement patterns of CE such as the swinging are proved to effectively improve examination efficiency and disease detection rates. This study is crucial for the clinical application of the MNCE system.
Collapse
Affiliation(s)
- Hongbo Sun
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuliang Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiao Lai
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqiang Chi
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chaoqun Niu
- College of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Lei Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhifan Teng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yang Shi
- School of Mechanical and Electrical Engineering, Xi'an Technological University, Xi'an, China
| | - Peilong Tian
- School of Mechanical and Electrical Engineering, Xi'an Technological University, Xi'an, China
| |
Collapse
|
5
|
Collins GC, Brumfiel TA, Bercu ZL, Desai JP, Lindsey BD. Dual-Resonance (16/32 MHz) Piezoelectric Transducer With a Single Electrical Connection for Forward-Viewing Robotic Guidewire. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1428-1441. [PMID: 35143395 PMCID: PMC9013008 DOI: 10.1109/tuffc.2022.3150746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral artery disease (PAD) affects more than 200 million people globally. Minimally invasive endovascular procedures can provide relief and salvage limbs while reducing injury rates and recovery times. Unfortunately, when a calcified chronic total occlusion is encountered, ~25% of endovascular procedures fail due to the inability to advance a guidewire using the view provided by fluoroscopy. To enable a sub-millimeter, robotically steerable guidewire to cross these occlusions, a novel single-element, dual-band transducer is developed that provides simultaneous multifrequency, forward-viewing imaging with high penetration depth and high spatial resolution while requiring only a single electrical connection. The design, fabrication, and acoustic characterization of this device are described, and proof-of-concept imaging is demonstrated in an ex vivo porcine artery after integration with a robotically steered guidewire. Measured center frequencies of the developed transducer were 16 and 32 MHz, with -6 dB fractional bandwidths of 73% and 23%, respectively. When imaging a 0.2-mm wire target at a depth of 5 mm, measured -6 dB target widths were 0.498 ± 0.02 and 0.268 ± 0.01 mm for images formed at 16 and 32 MHz, respectively. Measured SNR values were 33.3 and 21.3 dB, respectively. The 3-D images of the ex vivo artery demonstrate high penetration for visualizing vessel morphology at 16 MHz and ability to resolve small features close to the transducer at 32 MHz. Using images acquired simultaneously at both frequencies as part of an integrated forward-viewing, guidewire-based imaging system, an interventionalist could visualize the best path for advancing the guidewire to improve outcomes for patients with PAD.
Collapse
|
6
|
Kim J, Lew HM, Kim JH, Youn S, Faruque HA, Seo AN, Park SY, Chang JH, Kim E, Hwang JY. Forward-Looking Multimodal Endoscopic System Based on Optical Multispectral and High-Frequency Ultrasound Imaging Techniques for Tumor Detection. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:594-606. [PMID: 33079654 DOI: 10.1109/tmi.2020.3032275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a forward-looking (FL) multimodal endoscopic system that offers color, spectral classified, high-frequency ultrasound (HFUS) B-mode, and integrated backscattering coefficient (IBC) images for tumor detection in situ. Examination of tumor distributions from the surface of the colon to deeper inside is essential for determining a treatment plan of cancer. For example, the submucosal invasion depth of tumors in addition to the tumor distributions on the colon surface is used as an indicator of whether the endoscopic dissection would be operated. Thus, we devised the FL multimodal endoscopic system to offer information on the tumor distribution from the surface to deep tissue with high accuracy. This system was evaluated with bilayer gelatin phantoms which have different properties at each layer of the phantom in a lateral direction. After evaluating the system with phantoms, it was employed to characterize forty human colon tissues excised from cancer patients. The proposed system could allow us to obtain highly resolved chemical, anatomical, and macro-molecular information on excised colon tissues including tumors, thus enhancing the detection of tumor distributions from the surface to deep tissue. These results suggest that the FL multimodal endoscopic system could be an innovative screening instrument for quantitative tumor characterization.
Collapse
|
7
|
Abstract
Abstract
Purpose
Photoacoustic (PA) microscopy has emerged as a useful tool in biomedical imaging applications such as visualization of microvasculature and hemoglobin oxygen saturation, single-cell, and label-free imaging of organs including cancer. Since the ultrasound transducers used for PA signal detection are not optically transparent, the integration of optical and acoustic modules for coaxial alignment of laser and acoustic beam fields in PA microscopy is complex and costly.
Methods
Here, we report a recently developed optically transparent focused transducer for combined PA and ultrasound (US) microscopy. All the acoustic layers including the acoustic lens are optically transparent, enabling simple integration of optical and acoustic modules for both imaging modalities.
Results
The mean light transmittance of the transducer’s backing layer and acoustic lens and of the transducer itself were measured at 92%, 83%, and 66%, respectively. Results from in vitro and in vivo experiments demonstrated the transducer to be suitable for both US and PA imaging.
Conclusions
The results of this study represent a step toward efficient construction of probes for combined PA and US microscopy.
Collapse
|