1
|
Song L, Peng W, Lu Q, Feng L, Yang Z, Huang L, Luo Y. Thermoacoustic Imaging Using Single-Channel Data Acquisition System for Non-Invasive Assessment of Liver Microwave Ablation: A Feasibility Study. PHOTONICS 2024; 11:807. [DOI: 10.3390/photonics11090807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Microwave ablation (MWA) plays a crucial role in non-surgical liver cancer treatment, but the existing efficacy evaluation tools lack the characteristics of being real-time, non-invasive, and efficient. As an emerging imaging technology, thermoacoustic imaging (TAI) has attracted extensive clinical attention for its excellent merits, which combine the advantages of high contrast in microwave imaging and high resolution in ultrasound imaging. Particularly, the application of a circular scanned single-channel data acquisition system maximizes the capture of thermoacoustic signals, thereby providing more comprehensive image information and rendering reconstructed images closer to reality. This study aimed to verify the feasibility of TAI in non-invasive evaluation of the efficacy of MWA on ex vivo porcine liver and in vivo rabbit liver. During the experiments, ultrasound is used to cross-verify the results of TAI to ensure the accuracy and reliability of the method. Additionally, by altering the thickness of porcine liver tissue to increase the distance (from 0 mm to 80 mm) between the horn antenna and the target (soy sauce tube), TAI is used to observe the change of the image signal-to-noise ratio to preliminarily explore the imaging depth of TAI. The results of ex and in vivo experiments can not only promote the clinical application of TAI, but also be expected to provide a more accurate and reliable efficacy assessment method for MWA in liver cancer treatment.
Collapse
Affiliation(s)
- Ling Song
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanting Peng
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Lu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Feng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeqi Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Zia G, Sebek J, Prakash P. Temperature-dependent dielectric properties of human uterine fibroids over microwave frequencies. Biomed Phys Eng Express 2021; 7. [PMID: 34534970 DOI: 10.1088/2057-1976/ac27c2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Microwave ablation is under investigation as a minimally-invasive treatment for uterine fibroids. Computational models play a vital role in the development, evaluation and characterization of candidate ablation devices. The temperature-dependent dielectric properties of fibroid tissue are essential for accurate computational modeling.Objective:To measure the broadband temperature-dependent dielectric properties of uterine fibroids excised during hysterectomy procedures.Methods: The open-ended coaxial probe method was employed for measuring the broadband dielectric properties of freshly excised human uterine fibroid samples (n = 6) obtained from an IRB-approved tissue bank. The dielectric properties (relative permittivity,εr, and effective electrical conductivity,σeff) were evaluated at temperatures ranging from 23 °C-150 °C, over the frequency range of 0.5-6 GHz. Linear piecewise parametrization with respect to temperature and quadratic parametrization with respect to frequency was applied to characterize broadband temperature-dependent dielectric properties of fibroid tissue.Results: The baseline room temperature values ofεrvary from 57.5 ± 5.29 to 44.5 ± 5.77 units andσeffchanges from 0.91 ± 0.19 to 6.02 ± 0.7 S m-1over the frequency range of 0.5-6 GHz. At temperatures close to the water vaporization point,εr, drops considerably i.e. to 12%-14% of its baseline value for all measured frequencies.σeffvalues initially rise till 98 °C and then fall to 11%-13% of their baseline values at 125 °C for frequencies ≤2.45 GHz. Theσefffollows a decreasing trend for frequencies >2.45 GHz and drops to ∼6 % of their baseline room temperature values.Conclusion:The temperature dependent dielectric properties of uterine fibroid tissues over microwave frequency range are reported for the first time in this study. Parametric models of uterine fibroid dielectric properties are also presented for incorporation within computational models of microwave ablation of fibroids.
Collapse
Affiliation(s)
- Ghina Zia
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, United States of America
| | - Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, United States of America.,Department of Circuit Theory, Czech Technical University in Prague, Prague, Czech Republic
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|