1
|
Franceschini S, Autorino MM, Ambrosanio M, Pascazio V, Baselice F. An Ultrasound Prototype for Remote Hand Movement Sensing: The Finger Tapping Case. SENSORS (BASEL, SWITZERLAND) 2024; 25:123. [PMID: 39796915 PMCID: PMC11723403 DOI: 10.3390/s25010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
In the context of neurodegenerative diseases, finger tapping is a gold-standard test used by clinicians to evaluate the severity of the condition. The finger tapping test involves repetitive tapping between the index finger and thumb. Subjects affected by neurodegenerative diseases, such as Parkinson's disease, often exhibit symptoms like bradykinesia, rigidity, and tremor. As a result, when these individuals perform the finger tapping task, instability in both the tap rate and finger displacement can be observed. Currently, clinicians assess bradykinesia by visually observing the patient's finger tapping movements and qualitatively rating their severity. In this work, we present a novel ultrasound contactless system that provides quantitative measurements of finger tapping, including tap rate and finger displacements. The system functions as an ultrasound sonar capable of measuring the Doppler spectrum of waves reflected by the hand. From this spectrum, various characteristics of the hand movement can be extracted through appropriate processing techniques. Specifically, by performing time-frequency analysis and applying specialized data processing, tapping rates and finger displacements can be estimated. The system has been tested in real-world scenarios involving volunteer finger tapping sessions, demonstrating its potential for accurately measuring both tap rates and displacements.
Collapse
Affiliation(s)
- Stefano Franceschini
- Department of Engineering, University of Napoli Parthenope, Centro Direzionale, 80143 Napoli, Italy; (M.M.A.); (V.P.); (F.B.)
| | - Maria Maddalena Autorino
- Department of Engineering, University of Napoli Parthenope, Centro Direzionale, 80143 Napoli, Italy; (M.M.A.); (V.P.); (F.B.)
| | - Michele Ambrosanio
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Napoli Parthenope, Via della Repubblica 32, 80035 Napoli, Italy;
| | - Vito Pascazio
- Department of Engineering, University of Napoli Parthenope, Centro Direzionale, 80143 Napoli, Italy; (M.M.A.); (V.P.); (F.B.)
| | - Fabio Baselice
- Department of Engineering, University of Napoli Parthenope, Centro Direzionale, 80143 Napoli, Italy; (M.M.A.); (V.P.); (F.B.)
| |
Collapse
|
2
|
Yang CH, Huang H, Lee PY, Chuang YH, Chang WT, Huang CC. Increasing the Maximum Detectable Flow Velocity in High-Frequency Ultrasound Vector Doppler Imaging. IEEE Trans Biomed Eng 2024; 71:3181-3191. [PMID: 38949935 DOI: 10.1109/tbme.2024.3410244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
High-frequency ultrasound (HFUS; >30 MHz) Doppler imaging has been widely used in the imaging of small animals and humans because of its high resolution. Vector Doppler imaging (VDI) has certain advantages for visualizing complex flow patterns independent of the Doppler angle. However, no commercial HFUS VDI system is currently available; therefore, several studies have connected an ultrasound research platform (Verasonics Vantage 256) with an HFUS array transducer for HFUS VDI. Unfortunately, the maximum frame rate of this system is only 10 kHz at an operational frequency of 40 MHz because of limitations related to data transmission hardware, thereby restricting the maximum detectable velocity of Doppler measurements. To address this drawback, in the present study, an electrocardiography (ECG)-gating-based HFUS VDI system was developed to avoid Doppler flow aliasing in data acquisition by ultrasound research platform at its maximum frame rate of 10 kHz. The developed method aligns all tilted plane waves with the ECG R-wave, which avoids the trade-off between frame rate and tilted angles number in conventional VDI. The performance of the proposed data acquisition method in HFUS VDI was verified using a steady-flow phantom, for which estimation errors were less than 10% under different flow settings. In animal studies, peak flow velocities in the carotid artery, left ventricle, and aortic arch of wild-type mice were measured (approximately 55, 655, and 765 mm/s, respectively). Also, the HFUS VDI from the mitral regurgitation mice model was obtained to present the complex flow patterns through the proposed method. In contrast to the conventional method, no Doppler aliasing occurs in the proposed method because the frame rate is sufficient. The experimental results indicate the developed HFUS VDI has the potential to become a useful tool for vector flow visualization in small animals, even under a high flow velocity.
Collapse
|
3
|
Gao S, Chen J, Chen X, Uchitel J, Tang C, Li C, Pan Y, Zhao H. Temporal Dynamics and Physical Priori Multimodal Network for Rehabilitation Physical Training Evaluation. IEEE J Biomed Health Inform 2024; 28:5613-5623. [PMID: 38869994 DOI: 10.1109/jbhi.2024.3414291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sensor-based rehabilitation physical training assessment methods have attracted significant attention in refined evaluation scenarios. A refined rehabilitation evaluation method combines the expertise of clinicians with advanced sensor-based technology to capture and analyze subtle movement variations often unobserved by traditional subjective methods. Current approaches center on either body postures or muscle strength, which lack more sophisticated analysis features of muscle activation and coordination, thereby hindering analysis efficacy in deep rehabilitation feature exploration. To address this issue, we present a multimodal network algorithm that integrates surface electromyography (sEMG) and stress distribution signals. The algorithm considers the physical knowledge a priori to interpret the current rehabilitation stage and efficiently handles temporal dynamics arising from diverse user profiles in an online setting. Besides, we verified the performance of this model using a learned-nonuse phenomenon assessment task in 24 subjects, achieving an accuracy of 94.7%. Our results surpass those of conventional feature-based, distance-based, and ensemble baseline models, highlighting the advantages of incorporating multimodal information rather than relying solely on unimodal data. Moreover, the proposed model presents a network design solution for rehabilitation physical training that requires deep bioinformatic features and can potentially assist real-time and home-based physical training work.
Collapse
|
4
|
Huang H, Hsu P, Tsai S, Chuang Y, Chen D, Xu G, Chen C, Kuo Y, Huang C. High-Spatiotemporal-Resolution Ultrasound Flow Imaging to Determine Cerebrovascular Hemodynamics in Alzheimer's Disease Mice Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302345. [PMID: 37964413 PMCID: PMC10724386 DOI: 10.1002/advs.202302345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/28/2023] [Indexed: 11/16/2023]
Abstract
Although the relationships of cerebrovascular hemodynamic dysfunction with neurodegenerative diseases remain unclear, many studies have indicated that poor cerebral perfusion accelerates the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). Small animal models are widely used in AD research. However, providing an imaging modality with a high spatiotemporal resolution and sufficiently large field of view to assess cerebrovascular hemodynamics in vivo remains a challenge. The present study proposes a novel technique for high-spatiotemporal-resolution vector micro-Doppler imaging (HVμDI) based on contrast-free ultrafast high frequency ultrasound imaging to visualize the cerebrovascular hemodynamics of the mouse, with a data acquisition time of 0.4 s, a minimal detectable vessel size of 38 µm, and a temporal resolution of 500 Hz. In vivo experiments are conducted on wild-type and AD mice. Cerebrovascular hemodynamics are quantified using the cerebral vascular density, diameter, velocity, tortuosity, cortical flow pulsatility, and instant flow direction variations. Results reveal that AD significantly change the cerebrovascular hemodynamics. HVμDI offers new opportunities for in vivo analysis of cerebrovascular hemodynamics in neurodegenerative pathologies in preclinical animal research.
Collapse
Affiliation(s)
- Hsin Huang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Pei‐Ling Hsu
- Department of AnatomySchool of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiung80708Taiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiung80708Taiwan
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiung80708Taiwan
| | - Sheng‐Feng Tsai
- Department of Cell Biology and AnatomyCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
- Institute of Basic Medical SciencesCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
| | - Yi‐Hsiang Chuang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - De‐Quan Chen
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Guo‐Xuan Xu
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Chien Chen
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Min Kuo
- Department of Cell Biology and AnatomyCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
- Institute of Basic Medical SciencesCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
| | - Chih‐Chung Huang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Medical Device Innovation CenterNational Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
5
|
Xu GX, Chen PY, Huang CC. Visualization of Human Hand Tendon Mechanical Anisotropy in 3-D Using High- Frequency Dual-Direction Shear Wave Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1457-1469. [PMID: 37669211 DOI: 10.1109/tuffc.2023.3312273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
High-resolution ultrasound shear wave elastography has been used to determine the mechanical properties of hand tendons. However, because of fiber orientation, tendons have anisotropic properties; this results in differences in shear wave velocity (SWV) between ultrasound scanning cross sections. Rotating transducers can be used to achieve full-angle scanning. However, this technique is inconvenient to implement in clinical settings. Therefore, in this study, high-frequency ultrasound (HFUS) dual-direction shear wave imaging (DDSWI) based on two external vibrators was used to create both transverse and longitudinal shear waves in the human flexor carpi radialis tendon. SWV maps from two directions were obtained using 40-MHz ultrafast imaging at the same scanning cross section. The anisotropic map was calculated pixel by pixel, and 3-D information was obtained using mechanical scanning. A standard phantom experiment was then conducted to verify the performance of the proposed HFUS DDSWI technique. Human studies were also conducted where volunteers assumed three hand postures: relaxed (Rel), full fist (FF), and tabletop (TT). The experimental results indicated that both the transverse and longitudinal SWVs increased due to tendon flexion. The transverse SWV surpassed the longitudinal SWV in all cases. The average anisotropic ratios for the Rel, FF, and TT hand postures were 1.78, 2.01, and 2.21, respectively. Both the transverse and the longitudinal SWVs were higher at the central region of the tendon than at the surrounding region. In conclusion, the proposed HFUS DDSWI technique is a high-resolution imaging technique capable of characterizing the anisotropic properties of tendons in clinical applications.
Collapse
|
6
|
Vo MHT, Lin CJ, Chieh HF, Kuo LC, An KN, Wang YL, Su FC. Behavior of medial gastrocnemius muscle beneath kinesio taping during isometric contraction and badminton lunge performance after fatigue induction. Sci Rep 2023; 13:1779. [PMID: 36720990 PMCID: PMC9889375 DOI: 10.1038/s41598-023-28818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Kinesio taping (KT) is widely used in sports for performance improvement and injury prevention. However, little is known of the behavior of the muscle region beneath the KT with movement, particularly when the muscle is fatigued. Accordingly, this study investigated the changes in the medial gastrocnemius muscle architecture and fascia thickness when using KT during maximum isometric plantar flexion (MVIC) and badminton lunges following heel rise exercises performed to exhaustion. Eleven healthy collegiate badminton players (4 males and 7 females) were recruited. All of the participants performed two tasks (MVIC and badminton lunge) with a randomized sequence of no taping, KT and sham taping and repeated following exhaustive repetitive heel rise exercise. In the MVIC task, the fascia thickness with the medial gastrocnemius muscle at rest significantly decreased following fatigue induction both without taping and with KT and sham taping (p = 0.036, p = 0.028 and p = 0.025, respectively). In the lunge task, the fascia thickness reduced after fatigue induction in the no taping and sham taping trials; however, no significant change in the fascia thickness occurred in the KT trials. Overall, the results indicate that KT provides a better effect during dynamic movement than in isometric contraction.
Collapse
Affiliation(s)
- Minh Hoang-Thuc Vo
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Ju Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Feng Chieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Nan An
- Division of Orthopedic Research, Mayo Clinic, Rochester, USA
| | - Yu-Lin Wang
- Department of Rehabilitation, Chi Mei Medical Center, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Xue X, Zhang B, Moon S, Xu GX, Huang CC, Sharma N, Jiang X. Development of a Wearable Ultrasound Transducer for Sensing Muscle Activities in Assistive Robotics Applications. BIOSENSORS 2023; 13:134. [PMID: 36671969 PMCID: PMC9855872 DOI: 10.3390/bios13010134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Robotic prostheses and powered exoskeletons are novel assistive robotic devices for modern medicine. Muscle activity sensing plays an important role in controlling assistive robotics devices. Most devices measure the surface electromyography (sEMG) signal for myoelectric control. However, sEMG is an integrated signal from muscle activities. It is difficult to sense muscle movements in specific small regions, particularly at different depths. Alternatively, traditional ultrasound imaging has recently been proposed to monitor muscle activity due to its ability to directly visualize superficial and at-depth muscles. Despite their advantages, traditional ultrasound probes lack wearability. In this paper, a wearable ultrasound (US) transducer, based on lead zirconate titanate (PZT) and a polyimide substrate, was developed for a muscle activity sensing demonstration. The fabricated PZT-5A elements were arranged into a 4 × 4 array and then packaged in polydimethylsiloxane (PDMS). In vitro porcine tissue experiments were carried out by generating the muscle activities artificially, and the muscle movements were detected by the proposed wearable US transducer via muscle movement imaging. Experimental results showed that all 16 elements had very similar acoustic behaviors: the averaged central frequency, -6 dB bandwidth, and electrical impedance in water were 10.59 MHz, 37.69%, and 78.41 Ω, respectively. The in vitro study successfully demonstrated the capability of monitoring local muscle activity using the prototyped wearable transducer. The findings indicate that ultrasonic sensing may be an alternative to standardize myoelectric control for assistive robotics applications.
Collapse
Affiliation(s)
- Xiangming Xue
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sunho Moon
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Guo-Xuan Xu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nitin Sharma
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Chen Y, Zhu S, Chen H, Yao L, Zhou J, Xu Y, Lin B, Chen X. Diagnostic Value of Color Doppler Ultrasonography in Subacute Thyroiditis. SCANNING 2022; 2022:7456622. [PMID: 36189144 PMCID: PMC9509255 DOI: 10.1155/2022/7456622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
In order to explore the clinical effect of color Doppler ultrasonography in the diagnosis of subacute thyroiditis, a method for the diagnosis of subacute thyroiditis by color Doppler ultrasonography was proposed. From November 2019 to November 2020, 90 patients with subacute thyroiditis in our hospital were selected as the experimental group; 90 healthy people were selected as the control group during the same period. Both groups were diagnosed by color Doppler ultrasonography and compared. The experimental results showed that patients with subacute thyroiditis showed mild to moderate enlargement of the involved thyroid gland, and local or diffuse inhomogeneous hypoechoic areas may appear in bilateral or unilateral thyroid glands: irregular edges, unclear boundaries, no "ball feel," mottled changes, and accompanied by tenderness. The blood flow signal around the hypoechoic area is rich, and the internal blood flow signal is less. There was no significant increase in the blood flow velocity of the superior thyroid artery on the affected side. Color Doppler ultrasound not only is simple, economical, and non-invasive but also has a good diagnostic accuracy for subacute thyroiditis, which can provide an important basis for clinical diagnosis and treatment and is worthy of popularization and application.
Collapse
Affiliation(s)
- Yonggang Chen
- Department of Ultrasound, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian 361006, China
| | - Shulan Zhu
- Department of Ultrasound, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Huabin Chen
- National Demonstration Center for Experimental Electronic Information Education, Xiamen University, Xiamen, Fujian 361004, China
| | - Liting Yao
- Department of Ultrasound, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian 361006, China
| | - Jingmian Zhou
- Department of Ultrasound, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian 361006, China
| | - Yi Xu
- Department of Ultrasound, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian 361006, China
| | - Biqin Lin
- Department of Ultrasound, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian 361006, China
| | - Xiaoping Chen
- Department of Ultrasound, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian 361006, China
| |
Collapse
|
9
|
Clinical Value and Imaging Features of Bedside High-Frequency Ultrasound Imaging in the Diagnosis of Neonatal Pneumonia. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4805300. [PMID: 35833070 PMCID: PMC9246586 DOI: 10.1155/2022/4805300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The aim is to solve the problem of the urgent need of a nonradiation, noninvasive, and simple-to-operate diagnostic method for neonatal pneumonia that can indicate the severity of the disease and dynamically monitor the outcome of the disease. The authors propose a bedside high-frequency ultrasound technique based on methods for evaluation in the detection and treatment of neonatal pneumonia. The results obtained are as follows: the sensitivity of neonatal lung ultrasound in the diagnosis of neonatal pneumonia was 96.6%, the specificity was 93.3%, the positive predictive value was 93.5%, and the negative predictive value was 96.5%. The sensitivity of chest X-ray in the diagnosis of neonatal pneumonia was 93.3%. Compared with the lung ultrasound and chest X-ray in the diagnosis of neonatal pneumonia, the two had a good correlation. The neonatal respiratory score was positively correlated with the lung ultrasound score, and the higher the lung ultrasound score, the more severe the disease. The score decreased by 35% after 3 days of treatment and 68% after 7 days of treatment, indicating that the lung high-frequency ultrasound score can be very effective in characterizing the treatment situation. It has been demonstrated that the lung ultrasound can be used as an imaging method for the diagnosis of neonatal pneumonia. The higher the lung ultrasound score, the more severe the disease, and the lung ultrasound score was positively correlated with the disease severity. With dynamic monitoring of the lung ultrasound and the gradual improvement of clinical symptoms after treatment, the lung ultrasound score gradually decreased; therefore, the lung ultrasound can be used for re-examination of neonatal pneumonia to evaluate the treatment effect and guidance.
Collapse
|
10
|
Huang H, Chang WT, Huang CC. High-Spatiotemporal-Resolution Visualization of Myocardial Strains Through Vector Doppler Estimation: A Small-Animal Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1859-1870. [PMID: 35108204 DOI: 10.1109/tuffc.2022.3148873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-frequency ultrasound (HFUS) imaging is extensively used for cardiac diseases in small animals due to its high spatial resolution. However, there is a lack of a system that can provide a 2-D high-spatiotemporal dynamic visualization of mouse myocardial strains. In this article, a dynamic HFUS (40 MHz) high-resolution strain imaging was developed through the vector Doppler imaging. Following in vitro tests using a rubber balloon phantom, in vivo experiments were performed on wild-type (WT) and myocardial infarction (MI) mice. High-resolution dynamic images of myocardial strains were obtained in the longitudinal, radial, and circumferential directions at a frame rate of 1 kHz. Global peak strain values for WT mice were -19.3% ± 1.3% (longitudinal), 31.4% ± 1.7% (radial in the long axis), -19.9% ±.8% (circumferential), and 34.4% ± 1.9% (radial in the short axis); those for the MI mice were -16.1% ±.9% (longitudinal), 26.8% ± 2.9% (radial in the long axis), -15.2% ± 2.7% (circumferential), and 21.6% ± 4.8% (radial in the short axis). These results indicate that the strains for MI mice are significantly lower than those for WT mice. Regional longitudinal strain curves in the epicardial, midcardial, and endocardial layers were measured and the peak strain values for WT mice were -22.% and -16.8% in the endocardial and epicardial layers, respectively. However, no significant difference in the layer-based values was noted for the MI mice. Regional analysis results revealed obvious myocardial strain variation in the apical anterior region in the MI mice. The experimental results demonstrate that the proposed dynamic cardiac strain imaging can be useful in high-performance imaging of small-animal cardiac diseases.
Collapse
|
11
|
Lu JY, Lee PY, Huang CC. Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1326-1336. [PMID: 35175918 DOI: 10.1109/tuffc.2022.3152689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrafast ultrasound imaging based on plane wave (PW) compounding has been proposed for use in various clinical and preclinical applications, including shear wave imaging and super resolution blood flow imaging. Because the image quality afforded by PW imaging is highly dependent on the number of PW angles used for compounding, a tradeoff between image quality and frame rate occurs. In the present study, a convolutional neural network (CNN) beamformer based on a combination of the GoogLeNet and U-Net architectures was developed to replace the conventional delay-and-sum (DAS) algorithm to obtain high-quality images at a high frame rate. RF channel data are used as the inputs for the CNN beamformers. The outputs are in-phase and quadrature data. Simulations and phantom experiments revealed that the images predicted by the CNN beamformers had higher resolution and contrast than those predicted by conventional single-angle PW imaging with the DAS approach. In in vivo studies, the contrast-to-noise ratios (CNRs) of carotid artery images predicted by the CNN beamformers using three or five PWs as ground truths were approximately 12 dB in the transverse view, considerably higher than the CNR obtained using the DAS beamformer (3.9 dB). Most tissue speckle information was retained in the in vivo images produced by the CNN beamformers. In conclusion, only a single PW at 0° was fired, but the quality of the output image was proximal to that of an image generated using three or five PW angles. In other words, the quality-frame rate tradeoff of coherence compounding could be mitigated through the use of the proposed CNN for beamforming.
Collapse
|
12
|
Wang IC, Huang H, Chang WT, Huang CC. Wall shear stress mapping for human femoral artery based on ultrafast ultrasound vector Doppler estimations. Med Phys 2021; 48:6755-6764. [PMID: 34525217 DOI: 10.1002/mp.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Wall shear stress (WSS), a type of friction exerted on the artery wall by flowing blood, is considered a crucial factor in atherosclerotic plaque development. Currently, achieving a reliable WSS mapping of an artery noninvasively by using existing imaging modalities is still challenging. In this study, a WSS mapping based on vector Doppler flow velocity estimation was proposed to measure the dynamic WSS on the human femoral artery. METHODS Because ultrafast ultrasound imaging was used here, flow-enhanced imaging was also performed to observe the moving blood flow condition. The performance of WSS mapping was verified using both straight (8 mm in diameter) and stenosis (70% of stenosis) phantoms under a pulsatile flow condition. A human study was conducted from five healthy volunteers. RESULTS Experimental results demonstrated that the WSS estimation was close to the standard value that was obtained from maximum velocity estimation in straight phantom experiments. In a stenosis phantom experiment, a low WSS region was observed at a site downstream of an obstruction, which is a high-risk area for plaque formation. Dynamic WSS mapping was accomplished in measurement in the femoral artery bifurcation. In measurements, the time-averaged WSS of the common femoral artery, superficial femoral artery, and deep femoral artery was 0.52± 0.19, 0.44 ± 0.21, and 0.29 ± 0.16 Pa, respectively, for the anterior wall and 0.29 ± 0.11, 0.54 ± 0.24, and 0.23 ± 0.10 Pa, respectively, for the posterior wall. CONCLUSIONS All results indicated that WSS mapping has the potential to be a useful tool for vessel duplex scanning in the future.
Collapse
Affiliation(s)
- I-Chieh Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Hsin Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Wei-Ting Chang
- Department of Cardiology, Chi-Mei Medical Center, Tainan City, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
13
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
14
|
Chen PY, Yang TH, Kuo LC, Hsu HY, Su FC, Huang CC. Evaluation of Hand Tendon Elastic Properties During Rehabilitation Through High-Frequency Ultrasound Shear Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2716-2726. [PMID: 33956629 DOI: 10.1109/tuffc.2021.3077891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tendon injuries lead to tendon stiffness, which impairs skeletal muscle movement. Most studies have focused on patellar or Achilles tendons by using ultrasound elastography. Only a few studies have measured the stiffness of hand tendons because their thickness is only 1-2 mm, rendering clinical ultrasound elastography unsuitable for mapping hand tendon stiffness. In this study, a high-frequency ultrasound shear elastography (HFUSE) system was proposed to map the shear wave velocity (SWV) of hand flexor tendons. A handheld vibration system that was coaxially mounted with an external vibrator on a high-frequency ultrasound (HFUS) array transducer allowed the operators to scan hand tendons freely. To quantify the performance of HFUSE, six parameters were comprehensively measured from homogeneous, two-sided, and three-sided gelatin phantom experiments: bias, precision, lateral resolution, contrast, contrast-to-noise ratio (CNR), and accuracy. HFUSE demonstrated an excellent resolution of [Formula: see text] to distinguish the local stiffness of thin phantom (thickness: 1.2 mm) without compromising bias, precision, contrast, CNR, and accuracy, which has been noted with previous systems. Human experiments involved four patients with hand tendon injuries who underwent ≥2 months of rehabilitation. Using HFUSE, two-dimensional SWV images of flexor tendons could be clearly mapped for healthy and injured tendons, respectively. The findings demonstrate that HFUSE can be a promising tool for evaluating the elastic properties of the injured hand tendon after surgery and during rehabilitation and thus help monitor progress.
Collapse
|