1
|
Zeltser A, Ochneva A, Riabinina D, Zakurazhnaya V, Tsurina A, Golubeva E, Berdalin A, Andreyuk D, Leonteva E, Kostyuk G, Morozova A. EEG Techniques with Brain Activity Localization, Specifically LORETA, and Its Applicability in Monitoring Schizophrenia. J Clin Med 2024; 13:5108. [PMID: 39274319 PMCID: PMC11395834 DOI: 10.3390/jcm13175108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Electroencephalography (EEG) is considered a standard but powerful tool for the diagnosis of neurological and psychiatric diseases. With modern imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and magnetoencephalography (MEG), source localization can be improved, especially with low-resolution brain electromagnetic tomography (LORETA). The aim of this review is to explore the variety of modern techniques with emphasis on the efficacy of LORETA in detecting brain activity patterns in schizophrenia. The study's novelty lies in the comprehensive survey of EEG methods and detailed exploration of LORETA in schizophrenia research. This evaluation aligns with clinical objectives and has been performed for the first time. Methods: The study is split into two sections. Part I examines different EEG methodologies and adjuncts to detail brain activity in deep layers in articles published between 2018 and 2023 in PubMed. Part II focuses on the role of LORETA in investigating structural and functional changes in schizophrenia in studies published between 1999 and 2024 in PubMed. Results: Combining imaging techniques and EEG provides opportunities for mapping brain activity. Using LORETA, studies of schizophrenia have identified hemispheric asymmetry, especially increased activity in the left hemisphere. Cognitive deficits were associated with decreased activity in the dorsolateral prefrontal cortex and other areas. Comparison of the first episode of schizophrenia and a chronic one may help to classify structural change as a cause or as a consequence of the disorder. Antipsychotic drugs such as olanzapine or clozapine showed a change in P300 source density and increased activity in the delta and theta bands. Conclusions: Given the relatively low spatial resolution of LORETA, the method offers benefits such as accessibility, high temporal resolution, and the ability to map depth layers, emphasizing the potential of LORETA in monitoring the progression and treatment response in schizophrenia.
Collapse
Affiliation(s)
- Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeria Zakurazhnaya
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Elizaveta Golubeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Marketing, Faculty of Economics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Leonteva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education "Russian Biotechnological University (ROSBIOTECH)", Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
2
|
Sanchez MM, Ravan M, Hasey G, Reilly J, Minuzzi L. Diagnosing Suicidal Ideation from Resting State EEG Data Using a Machine Learning Algorithm. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-6. [PMID: 40039997 DOI: 10.1109/embc53108.2024.10782191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Suicide poses a global health crisis with significant social and economic impact. Prevention may be possible if objective quantitative methods are developed to supplement the often inaccurate interview-based risk assessments. Our research goal is to develop a machine learning algorithm (MLA) to predict the presence of suicide ideation from resting state electroencephalography (EEG) data collected from 224 subjects with major depressive disorder (MDD) in the Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression (EMBARC) study. Using the Concise Health Risk Tracking Self-Report (CHRT-SR14) questionnaire, 194 subjects acknowledged having suicidal ideation (group 1) and 30 did not (group 2). We balanced the database by matching 30 subjects from group 1 using propensity score analysis. A four-step prediction algorithm was then applied to the selected data including 1) EEG data preprocessing, 2) brain source localization (BSL) using the robust exact low-resolution electromagnetic tomography (ReLORETA) method, 3) determining the connectivity between the brain regions using symbolic transfer entropy (STE), 4) applying MLA to the STE features. Three common classifiers, Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) were used in this study. Using 70% of the data for training and evaluation and 30% for testing, all three classifiers delivered a high accuracy, where the highest performance belonged to SVM with 88.9% accuracy. These findings support the potential utility of ML analysis of EEG data as a non-verbal way to enhance the accuracy of suicide risk evaluation.
Collapse
|
3
|
Torabi A, Reilly J, MacCrimmon D. Diagnosis of schizophrenia using an extended multivariate autoregressive model for EEGs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-6. [PMID: 40039033 DOI: 10.1109/embc53108.2024.10782941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Schizophrenia is a complex brain disorder that leads to an abnormal interpretation of reality. One of its reliable biological markers is the auditory evoked potential P300. The aim of the current paper is to classify healthy-control subjects from schizophrenic patients using EEG signals collected during an auditory oddball paradigm. The electroencephalogram (EEG) is modeled by a multivariate autoregressive (MVAR) model that takes into account the instantaneous causality between the EEG channels. After preprocessing, 19 channels of the recorded signals were divided into seven clusters based on their location. Next, the PCA technique was employed to obtain the first principal component inside each cluster. By imposing realistic constraints to estimate instantaneous effects between the variables, the instantaneous interactions matrix and, consequently, the extended multivariate autoregressive (eMVAR) model were estimated. Then, extended partial directed coherences (ePDCs) were extracted as connectivity features. The mRMR algorithm was utilized to reduce the feature dimension, and finally, the selected features were imported into a deep neural network for classification between healthy and schizophrenic states. The results showed that the eMVAR model outperformed the strictly causal model in classifying schizophrenic patients. With eMVAR modeling, an accuracy of 91.11% was obtained by using only four features. Furthermore, the most discriminative connectivity feature was ePDC from left posterior (LP) to (LP), and the most informative frequency band was the gamma sub-band. We have therefore presented evidence that the proposed approach enhances the characterization and diagnosis of schizophrenia.
Collapse
|
4
|
Zhang G, Carrasco CD, Winsler K, Bahle B, Cong F, Luck SJ. Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data. Neuroimage 2024; 293:120625. [PMID: 38704056 PMCID: PMC11098681 DOI: 10.1016/j.neuroimage.2024.120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Principal component analysis (PCA) has been widely employed for dimensionality reduction prior to multivariate pattern classification (decoding) in EEG research. The goal of the present study was to provide an evaluation of the effectiveness of PCA on decoding accuracy (using support vector machines) across a broad range of experimental paradigms. We evaluated several different PCA variations, including group-based and subject-based component decomposition and the application of Varimax rotation or no rotation. We also varied the numbers of PCs that were retained for the decoding analysis. We evaluated the resulting decoding accuracy for seven common event-related potential components (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity). We also examined more challenging decoding tasks, including decoding of face identity, facial expression, stimulus location, and stimulus orientation. The datasets also varied in the number and density of electrode sites. Our findings indicated that none of the PCA approaches consistently improved decoding performance related to no PCA, and the application of PCA frequently reduced decoding performance. Researchers should therefore be cautious about using PCA prior to decoding EEG data from similar experimental paradigms, populations, and recording setups.
Collapse
Affiliation(s)
- Guanghui Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning, 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China; Center for Mind and Brain, University of California-Davis, Davis, CA, 95618, USA.
| | - Carlos D Carrasco
- Center for Mind and Brain, University of California-Davis, Davis, CA, 95618, USA
| | - Kurt Winsler
- Center for Mind and Brain, University of California-Davis, Davis, CA, 95618, USA
| | - Brett Bahle
- Center for Mind and Brain, University of California-Davis, Davis, CA, 95618, USA
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China; Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, 40014, Finland; Key Laboratory of Social Computing and Cognitive Intelligence, Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Steven J Luck
- Center for Mind and Brain, University of California-Davis, Davis, CA, 95618, USA
| |
Collapse
|
5
|
Ravan M, Noroozi A, Sanchez MM, Borden L, Alam N, Flor-Henry P, Colic S, Khodayari-Rostamabad A, Minuzzi L, Hasey G. Diagnostic deep learning algorithms that use resting EEG to distinguish major depressive disorder, bipolar disorder, and schizophrenia from each other and from healthy volunteers. J Affect Disord 2024; 346:285-298. [PMID: 37963517 DOI: 10.1016/j.jad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Mood disorders and schizophrenia affect millions worldwide. Currently, diagnosis is primarily determined by reported symptomatology. As symptoms may overlap, misdiagnosis is common, potentially leading to ineffective or destabilizing treatment. Diagnostic biomarkers could significantly improve clinical care by reducing dependence on symptomatic presentation. METHODS We used deep learning analysis (DLA) of resting electroencephalograph (EEG) to differentiate healthy control (HC) subjects (N = 239), from those with major depressive disorder (MDD) (N = 105), MDD-atypical (MDD-A) (N = 27), MDD-psychotic (MDD-P) (N = 35), bipolar disorder-depressed episode (BD-DE) (N = 71), BD-manic episode (BD-ME) (N = 49), and schizophrenia (SCZ) (N = 122) and also differentiate subjects with mental disorders on a pair-wise basis. DSM-III-R diagnoses were determined and supplemented by computerized Quick Diagnostic Interview Schedule. After EEG preprocessing, robust exact low-resolution electromagnetic tomography (ReLORETA) computed EEG sources for 82 brain regions. 20 % of all subjects were then set aside for independent testing. Feature selection methods were then used for the remaining subjects to identify brain source regions that are discriminating between diagnostic categories. RESULTS Pair-wise classification accuracies between 90 % and 100 % were obtained using independent test subjects whose data were not used for training purposes. The most frequently selected features across various pairs are in the postcentral, supramarginal, and fusiform gyri, the hypothalamus, and the left cuneus. Brain sites discriminating SCZ from HC were mainly in the left hemisphere while those separating BD-ME from HC were on the right. LIMITATIONS The use of superseded DSM-III-R diagnostic system and relatively small sample size in some disorder categories that may increase the risk of overestimation. CONCLUSIONS DLA of EEG could be trained to autonomously classify psychiatric disorders with over 90 % accuracy compared to an expert clinical team using standardized operational methods.
Collapse
Affiliation(s)
- Maryam Ravan
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA.
| | - Amin Noroozi
- Department of Digital, Technologies, and Arts, Staffordshire University, Staffordshire, England, UK
| | - Mary Margarette Sanchez
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | - Lee Borden
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | - Nafia Alam
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | | | - Sinisa Colic
- Department of Electrical Engineering, University of Toronto, Canada
| | | | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Gary Hasey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Chandrabhatla AS, Pomeraniec IJ, Horgan TM, Wat EK, Ksendzovsky A. Landscape and future directions of machine learning applications in closed-loop brain stimulation. NPJ Digit Med 2023; 6:79. [PMID: 37106034 PMCID: PMC10140375 DOI: 10.1038/s41746-023-00779-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/17/2023] [Indexed: 04/29/2023] Open
Abstract
Brain stimulation (BStim) encompasses multiple modalities (e.g., deep brain stimulation, responsive neurostimulation) that utilize electrodes implanted in deep brain structures to treat neurological disorders. Currently, BStim is primarily used to treat movement disorders such as Parkinson's, though indications are expanding to include neuropsychiatric disorders like depression and schizophrenia. Traditional BStim systems are "open-loop" and deliver constant electrical stimulation based on manually-determined parameters. Advancements in BStim have enabled development of "closed-loop" systems that analyze neural biomarkers (e.g., local field potentials in the sub-thalamic nucleus) and adjust electrical modulation in a dynamic, patient-specific, and energy efficient manner. These closed-loop systems enable real-time, context-specific stimulation adjustment to reduce symptom burden. Machine learning (ML) has emerged as a vital component in designing these closed-loop systems as ML models can predict / identify presence of disease symptoms based on neural activity and adaptively learn to modulate stimulation. We queried the US National Library of Medicine PubMed database to understand the role of ML in developing closed-loop BStim systems to treat epilepsy, movement disorders, and neuropsychiatric disorders. Both neural and non-neural network ML algorithms have successfully been leveraged to create closed-loop systems that perform comparably to open-loop systems. For disorders in which the underlying neural pathophysiology is relatively well understood (e.g., Parkinson's, essential tremor), most work has involved refining ML models that can classify neural signals as aberrant or normal. The same is seen for epilepsy, where most current research has focused on identifying optimal ML model design and integrating closed-loop systems into existing devices. For neuropsychiatric disorders, where the underlying pathologic neural circuitry is still being investigated, research is focused on identifying biomarkers (e.g., local field potentials from brain nuclei) that ML models can use to identify onset of symptoms and stratify severity of disease.
Collapse
Affiliation(s)
- Anirudha S Chandrabhatla
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - I Jonathan Pomeraniec
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neurosurgery, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA.
| | - Taylor M Horgan
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - Elizabeth K Wat
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland Medical System, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Baygin M, Barua PD, Chakraborty S, Tuncer I, Dogan S, Palmer E, Tuncer T, Kamath AP, Ciaccio EJ, Acharya UR. CCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals. Physiol Meas 2023; 44. [PMID: 36599170 DOI: 10.1088/1361-6579/acb03c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Objective.Schizophrenia (SZ) is a severe, chronic psychiatric-cognitive disorder. The primary objective of this work is to present a handcrafted model using state-of-the-art technique to detect SZ accurately with EEG signals.Approach.In our proposed work, the features are generated using a histogram-based generator and an iterative decomposition model. The graph-based molecular structure of the carbon chain is employed to generate low-level features. Hence, the developed feature generation model is called the carbon chain pattern (CCP). An iterative tunable q-factor wavelet transform (ITQWT) technique is implemented in the feature extraction phase to generate various sub-bands of the EEG signal. The CCP was applied to the generated sub-bands to obtain several feature vectors. The clinically significant features were selected using iterative neighborhood component analysis (INCA). The selected features were then classified using the k nearest neighbor (kNN) with a 10-fold cross-validation strategy. Finally, the iterative weighted majority method was used to obtain the results in multiple channels.Main results.The presented CCP-ITQWT and INCA-based automated model achieved an accuracy of 95.84% and 99.20% using a single channel and majority voting method, respectively with kNN classifier.Significance.Our results highlight the success of the proposed CCP-ITQWT and INCA-based model in the automated detection of SZ using EEG signals.
Collapse
Affiliation(s)
- Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey
| | - Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Australia.,Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia.,Center for Advanced Modelling and Geospatial Information Systems, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ilknur Tuncer
- Elazig Governorship, Interior Ministry, Elazig, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Elizabeth Palmer
- Centre of Clinical Genetics, Sydney Children's Hospitals Network, Randwick 2031, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick 2031, Australia
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Aditya P Kamath
- Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Edward J Ciaccio
- Department of Medicine, Columbia University Irving Medical Center, United States of America
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, S599489, Singapore.,Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore.,Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Khare SK, Bajaj V, Acharya UR. SchizoNET: a robust and accurate Margenau-Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals. Physiol Meas 2023; 44. [PMID: 36787641 DOI: 10.1088/1361-6579/acbc06] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Objective.Schizophrenia (SZ) is a severe chronic illness characterized by delusions, cognitive dysfunctions, and hallucinations that impact feelings, behaviour, and thinking. Timely detection and treatment of SZ are necessary to avoid long-term consequences. Electroencephalogram (EEG) signals are one form of a biomarker that can reveal hidden changes in the brain during SZ. However, the EEG signals are non-stationary in nature with low amplitude. Therefore, extracting the hidden information from the EEG signals is challenging.Approach.The time-frequency domain is crucial for the automatic detection of SZ. Therefore, this paper presents the SchizoNET model combining the Margenau-Hill time-frequency distribution (MH-TFD) and convolutional neural network (CNN). The instantaneous information of EEG signals is captured in the time-frequency domain using MH-TFD. The time-frequency amplitude is converted to two-dimensional plots and fed to the developed CNN model.Results.The SchizoNET model is developed using three different validation techniques, including holdout, five-fold cross-validation, and ten-fold cross-validation techniques using three separate public SZ datasets (Dataset 1, 2, and 3). The proposed model achieved an accuracy of 97.4%, 99.74%, and 96.35% on Dataset 1 (adolescents: 45 SZ and 39 HC subjects), Dataset 2 (adults: 14 SZ and 14 HC subjects), and Dataset 3 (adults: 49 SZ and 32 HC subjects), respectively. We have also evaluated six performance parameters and the area under the curve to evaluate the performance of our developed model.Significance.The SchizoNET is robust, effective, and accurate, as it performed better than the state-of-the-art techniques. To the best of our knowledge, this is the first work to explore three publicly available EEG datasets for the automated detection of SZ. Our SchizoNET model can help neurologists detect the SZ in various scenarios.
Collapse
Affiliation(s)
- Smith K Khare
- Electrical and Computer Engineering Department, Aarhus University, Denmark
| | - Varun Bajaj
- Discipline of Electronics and Communication Engineering, Indian Institute of Information Technology, Design, and Manufacturing (IIITDM) Jabalpur, India
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, Australia.,Department of Biomedical Engineering, School of Science and Technology, University of Social Sciences, Singapore.,Department of Biomedical Informatics and Medical Engineering, Asia University, Taiwan.,Distinguished Professor, Kumamoto University, Japan.,Adjunct Professor, University of Malaya, Malaysia
| |
Collapse
|
10
|
Discriminating between bipolar and major depressive disorder using a machine learning approach and resting-state EEG data. Clin Neurophysiol 2023; 146:30-39. [PMID: 36525893 DOI: 10.1016/j.clinph.2022.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Distinguishing major depressive disorder (MDD) from bipolar disorder (BD) is a crucial clinical challenge as effective treatment is quite different for each condition. In this study electroencephalography (EEG) was explored as an objective biomarker for distinguishing MDD from BD using an efficient machine learning algorithm (MLA) trained by a relatively large and balanced dataset. METHODS A 3 step MLA was applied: (1) a multi-step preprocessing method was used to improve the quality of the EEG signal, (2) symbolic transfer entropy (STE), an effective connectivity measure, was applied to the resultant EEG and (3) the MLA used the extracted STE features to distinguish MDD (N = 71) from BD (N = 71) subjects. RESULTS 14 connectivity features were selected by the proposed algorithm. Most of the selected features were related to the frontal, parietal, and temporal lobe electrodes. The major involved regions were the Broca region in the frontal lobe and the somatosensory association cortex in the parietal lobe. These regions are near electrodes FC5 and CPz and are involved in processing language and sensory information, respectively. The resulting classifier delivered an evaluation accuracy of 88.5% and a test accuracy of 89.3%, using 80% of the data for training and evaluation and the remaining 20% for testing, respectively. CONCLUSIONS The high evaluation and test accuracies of our algorithm, derived from a large balanced training sample suggests that this method may hold significant promise as a clinical tool. SIGNIFICANCE The proposed MLA may provide an inexpensive and readily available tool that clinicians may use to enhance diagnostic accuracy and shorten time to effective treatment.
Collapse
|
11
|
Ferrara M, Franchini G, Funaro M, Cutroni M, Valier B, Toffanin T, Palagini L, Zerbinati L, Folesani F, Murri MB, Caruso R, Grassi L. Machine Learning and Non-Affective Psychosis: Identification, Differential Diagnosis, and Treatment. Curr Psychiatry Rep 2022; 24:925-936. [PMID: 36399236 PMCID: PMC9780131 DOI: 10.1007/s11920-022-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE OF REVIEW This review will cover the most relevant findings on the use of machine learning (ML) techniques in the field of non-affective psychosis, by summarizing the studies published in the last three years focusing on illness detection and treatment. RECENT FINDINGS Multiple ML tools that include mostly supervised approaches such as support vector machine, gradient boosting, and random forest showed promising results by applying these algorithms to various sources of data: socio-demographic information, EEG, language, digital content, blood biomarkers, neuroimaging, and electronic health records. However, the overall performance, in the binary classification case, varied from 0.49, which is to be considered very low (i.e., noise), to over 0.90. These results are fully justified by different factors, some of which may be attributable to the preprocessing of the data, the wide variety of the data, and the a-priori setting of hyperparameters. One of the main limitations of the field is the lack of stratification of results based on biological sex, given that psychosis presents differently in men and women; hence, the necessity to tailor identification tools and data analytic strategies. Timely identification and appropriate treatment are key factors in reducing the consequences of psychotic disorders. In recent years, the emergence of new analytical tools based on artificial intelligence such as supervised ML approaches showed promises as a potential breakthrough in this field. However, ML applications in everyday practice are still in its infancy.
Collapse
Affiliation(s)
- Maria Ferrara
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy.
- Department of Psychiatry, Yale School of Medicine, 34 Park Street, New Haven, CT, USA.
| | - Giorgia Franchini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/B, Modena, Italy
- Department of Mathematics and Computer Science, University of Ferrara, Via Macchiavelli 33, Ferrara, Italy
| | - Melissa Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, 333 Cedar St., New Haven, CT, USA
| | - Marcello Cutroni
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| | - Beatrice Valier
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| | - Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| | - Laura Palagini
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| | - Luigi Zerbinati
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| | - Federica Folesani
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| | - Martino Belvederi Murri
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| | - Rosangela Caruso
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, via Fossato di Mortara 64/A, Ferrara, Italy
| |
Collapse
|
12
|
Margarette Sanchez M, Borden L, Alam N, Noroozi A, Ravan M, Flor-Henry P, Hasey G. A Machine Learning Algorithm to Discriminating Between Bipolar and Major Depressive Disorders Based on Resting EEG Data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2635-2638. [PMID: 36085796 DOI: 10.1109/embc48229.2022.9871453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Distinguishing major depressive disorder (MDD) from bipolar disorder (BD) is a crucial clinical challenge due to the lack of known biomarkers. Conventional methods of diagnosis rest exclusively on symptomatic presentation, and personal and family history. As a result, BD-depressed episode (BD-DE) is often misdiagnosed as MDD, and inappropriate therapy is given. Electroencephalography (EEG) has been widely studied as a potential source of biomarkers to differentiate these disorders. Previous attempts using machine learning (ML) methods have delivered insufficient sensitivity and specificity for clinical use, likely as a consequence of the small training set size, and inadequate ML methodology. We hope to overcome these limitations by employing a training dataset of resting-state EEG from 71 MDD and 71 BD patients. We introduce a robust 3 steps ML technique: 1) a multi-step preprocessing method is used to improve the quality of the EEG signal 2) symbolic transfer entropy (STE), which is an effective connectivity measure, is applied to the resultant EEG signals 3) the ML algorithm uses the extracted STE features to distinguish MDD from BD patients. Clinical Relevance--- The accuracy of our algorithm, derived from a large sample of patients, suggests that this method may hold significant promise as a clinical tool. The proposed method delivered total accuracy, sensitivity, and specificity of 84.9%, 83.4%, and 87.1%, respectively.
Collapse
|