1
|
Liu S, Feng L, Li Y, Ni M, Jiang C, Yuan H. Participant Discomfort During 5 T MRI Examinations and Its Contributing Factors. J Magn Reson Imaging 2025. [PMID: 40156278 DOI: 10.1002/jmri.29766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND 5 T magnetic resonance imaging (MRI)-induced patient discomfort and the associated contributing factors remain unclear. PURPOSE To assess the frequency of discomfort during 5 T MRI examinations and analyze the contributing factors that may lead to discomfort, understand the potential challenges, and improve patient experience with 5 T systems. STUDY TYPE Prospective study. POPULATION A total of 539 participants, comprising patients and healthy volunteers. FIELD STRENGTH/SEQUENCE 5.0 T. ASSESSMENT Each participant completed a post-MRI examination tolerance questionnaire evaluating discomfort and overall examination experience. Each type of discomfort was analyzed separately to determine its relationship with the contributing factors. Further analysis identified specific elements that had the most significant impact within each factor and examined interdependencies among discomfort types. STATISTICAL TESTS Chi-square and Mann-Whitney U tests were used to compare the presence of discomfort across contributing factors. One-way analysis of variance or Kruskal-Wallis tests assessed the relationship between discomfort and contributing factors. Spearman's rank correlation evaluated interdependencies among different types of discomfort. RESULTS The rank order of discomfort was noise (13%), examination area heat (8.2%), and vertigo while moving (6.1%), whereas 72.8% (381/523) of participants reported no discomfort during the examination. Regarding the overall examination experience, less than 1% of the participants reported an unpleasant experience (2/539), 3% a neutral experience (17/539), and over 96.5% a pleasant experience (520/539). Additionally, space constraints, noise, paresthesia, examination area heat, whole-body heat, and overall examination experience were significantly influenced by different variables. Moreover, varying degrees of correlation were observed among different discomfort types. DATA CONCLUSION The 5 T MRI system is clinically safe, with minimal reported discomfort. Optimization strategies addressing contributing factors could enhance patient comfort and facilitate broader adoption of 5 T MRI technology. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Suwei Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Limin Feng
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Yali Li
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ming Ni
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Chenyu Jiang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Soon SH, Li X, Waks M, Zhu XH, Wiesner HM, Gandji NP, Yang QX, Lanagan MT, Chen W. Large improvement in RF magnetic fields and imaging SNR with whole-head high-permittivity slurry helmet for human-brain MRI applications at 7 T. Magn Reson Med 2025; 93:1205-1219. [PMID: 39449244 DOI: 10.1002/mrm.30350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE To optimize the design and demonstrate the integration of a helmet-shaped container filled with a high-permittivity material (HPM) slurry with RF head coil arrays to improve RF coil sensitivity and SNR for human-brain proton MRI. METHODS RF reception magnetic fields (B 1 - $$ {\mathrm{B}}_1^{-} $$ ) of a 32-channel receive-only coil array with various geometries and permittivity values of HPM slurry helmet are calculated with electromagnetic simulation at 7 T. A 16-channel transmit-only coil array, a 32-channel receive-only coil array, and a 2-piece HPM slurry helmet were constructed and assembled. RF transmission magnetic field (B 1 + $$ {\mathrm{B}}_1^{+} $$ ),B 1 - $$ {\mathrm{B}}_1^{-} $$ , and MRI SNR maps from the entire human brain were measured and compared. RESULTS Simulations showed that averagedB 1 - $$ {\mathrm{B}}_1^{-} $$ improvement with the HPM slurry helmet increased from 57% to 87% as the relative permittivity (εr) of HPM slurry increased from 110 to 210. In vivo experiments showed that the averageB 1 + $$ {\mathrm{B}}_1^{+} $$ improvement over the human brain was 14.5% with the two-piece HPM slurry (εr ≈ 170) helmet, and the averageB 1 - $$ {\mathrm{B}}_1^{-} $$ and SNR were improved 63% and 34%, respectively, because the MRI noise level was increased by the lossy HPM. CONCLUSION The RF coil sensitivity and MRI SNR were largely improved with the two-piece HPM slurry helmet demonstrated by both electromagnetic simulations and in vivo human head experiments at 7 T. The findings demonstrate that incorporating an easily producible HPM slurry helmet into the RF coil array significantly enhances human-brain MRI SNR homogeneity and quality at ultrahigh field. Greater SNR improvement is anticipated using the less lossy HPM and optimal design.
Collapse
Affiliation(s)
- Soo Han Soon
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xin Li
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matt Waks
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hannes M Wiesner
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Navid P Gandji
- Center for NMR Research, Department of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Qing X Yang
- Center for NMR Research, Department of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Michael T Lanagan
- Department of Engineering Science and Mechanics, Pennsylvania State University, State College, Pennsylvania, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Wang Y, Chi Z, Yi Y, Qi Y, Li X, Zhao Q, Zheng Z. Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T. Magn Reson Imaging 2025; 116:110291. [PMID: 39626829 DOI: 10.1016/j.mri.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
OBJECTIVE To design a metasurface-inspired conformal elliptical-cylinder resonator (MICER) for wrist magnetic resonance imaging at 1.5 T and evaluate its potential for clinical applications. METHODS An electromagnetic simulation was used to characterize the effect of MICER on radio frequency fields. A phantom and 14 wrists from 7 healthy volunteers were examined using a 1.5 T MRI system. The examination included T1-weighted spin echo, fat-saturation proton density-weighted fast spin echo, and three-dimensional T1-weighted gradient echo sequences. All scans were repeated using two methods: MICER combined with the spinal coil, which is a surface coil built-in examination table, and the 12-channel wrist array coil, to receive signals. Image signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and the differences between the two methods were compared using a paired Student's t-test. RESULTS In the phantom study, the image obtained with MICER had a higher SNR compared to the image obtained with the 12-channel wrist coil. Almost all wrist tissues showed a higher SNR on the images obtained with MICER than on the images obtained with the 12-channel wrist coil (P < 0.05). And the CNR between wrist tissues on images obtained with MICER was higher than that obtained with the 12-channel wrist coil (P < 0.05). CONCLUSIONS The quality of the MRI using MICER is superior to that of the commercially available 12-channel wrist coil, indicating its potential value for clinical practice.
Collapse
Affiliation(s)
- Yakui Wang
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Zhonghai Chi
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yi Yi
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yingyi Qi
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xinxin Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| |
Collapse
|
4
|
Nurzed B, Saha N, Millward JM, Niendorf T. 3D Metamaterials Facilitate Human Cardiac MRI at 21.0 Tesla: A Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2025; 25:620. [PMID: 39943259 PMCID: PMC11820977 DOI: 10.3390/s25030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
The literature reports highlight the transmission field (B1+) uniformity and efficiency constraints of cardiac magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHF). This simulation study proposes a 3D Metamaterial (MM) to address these challenges. The study proposes a 3D MM consisting of unit cells (UC) with split ring resonator (SRR) layers immersed in dielectric material glycerol. Implementing the proposed MM design aims to reduce the effective thickness and weight of the dielectric material while shaping B1+ and improving the penetration depth. The latter is dictated by the chosen array size, where small local UC arrays can focus B1+ and larger UC arrays can increase the field of view, at the cost of a lower penetration depth. Designing RF antennas that can effectively transmit at 21.0 T while maintaining patient safety and comfort is challenging. Using Self-Grounded Bow-Tie (SGBT) antennas in conjunction with the proposed MM demonstrated enhanced B1+ efficiency and uniformity across the human heart without signal voids. The study employed dynamic parallel transmission with tailored kT points to homogenize the 3D flip angle over the whole heart. This proof-of-concept study provides the technical foundation for human cardiac MRI at 21.0 T. Such numerical simulations are mandatory precursors for the realization of whole-body human UHF MR instruments.
Collapse
Affiliation(s)
- Bilguun Nurzed
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (B.N.); (N.S.); (J.M.M.)
- Faculty V, Medical Engineering, Technische Universität Berlin, 10587 Berlin, Germany
- Faculty II, Berliner Hochschule für Technik, 13353 Berlin, Germany
| | - Nandita Saha
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (B.N.); (N.S.); (J.M.M.)
- Charité—Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jason M. Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (B.N.); (N.S.); (J.M.M.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (B.N.); (N.S.); (J.M.M.)
- Charité—Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
5
|
Ren Q, Lang Y, Jia Y, Xiao X, Liu Y, Kong X, Jin R, He Y, Zhang J, You JW, Sha WEI, Pang Y. High-Q metasurface signal isolator for 1.5T surface coil magnetic resonance imaging on the go. OPTICS EXPRESS 2024; 32:8751-8762. [PMID: 38571125 DOI: 10.1364/oe.514806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/24/2024] [Indexed: 04/05/2024]
Abstract
The combination of surface coils and metamaterials remarkably enhance magnetic resonance imaging (MRI) performance for significant local staging flexibility. However, due to the coupling in between, impeded signal-to-noise ratio (SNR) and low-contrast resolution, further hamper the future growth in clinical MRI. In this paper, we propose a high-Q metasurface decoupling isolator fueled by topological LC loops for 1.5T surface coil MRI system, increasing the magnetic field up to fivefold at 63.8 MHz. We have employed a polarization conversion mechanism to effectively eliminate the coupling between the MRI metamaterial and the radio frequency (RF) surface transmitter-receiver coils. Furthermore, a high-Q metasurface isolator was achieved by taking advantage of bound states in the continuum (BIC) for extremely high-resolution MRI and spectroscopy. An equivalent physical model of the miniaturized metasurface design was put forward through LC circuit analysis. This study opens up a promising route for the easy-to-use and portable surface coil MRI scanners.
Collapse
|
6
|
Saha N, Kuehne A, Millward JM, Eigentler TW, Starke L, Waiczies S, Niendorf T. Advanced Radio Frequency Applicators for Thermal Magnetic Resonance Theranostics of Brain Tumors. Cancers (Basel) 2023; 15:cancers15082303. [PMID: 37190232 DOI: 10.3390/cancers15082303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) is a theranostic concept that combines diagnostic magnetic resonance imaging (MRI) with targeted thermal therapy in the hyperthermia (HT) range using a radiofrequency (RF) applicator in an integrated system. ThermalMR adds a therapeutic dimension to a diagnostic MRI device. Focused, targeted RF heating of deep-seated brain tumors, accurate non-invasive temperature monitoring and high-resolution MRI are specific requirements of ThermalMR that can be addressed with novel concepts in RF applicator design. This work examines hybrid RF applicator arrays combining loop and self-grounded bow-tie (SGBT) dipole antennas for ThermalMR of brain tumors, at magnetic field strengths of 7.0 T, 9.4 T and 10.5 T. These high-density RF arrays improve the feasible transmission channel count, and provide additional degrees of freedom for RF shimming not afforded by using dipole antennas only, for superior thermal therapy and MRI diagnostics. These improvements are especially relevant for ThermalMR theranostics of deep-seated brain tumors because of the small surface area of the head. ThermalMR RF applicators with the hybrid loop+SGBT dipole design outperformed applicators using dipole-only and loop-only designs, with superior MRI performance and targeted RF heating. Array variants with a horse-shoe configuration covering an arc (270°) around the head avoiding the eyes performed better than designs with 360° coverage, with a 1.3 °C higher temperature rise inside the tumor while sparing healthy tissue. Our EMF and temperature simulations performed on a virtual patient with a clinically realistic intracranial tumor provide a technical foundation for implementation of advanced RF applicators tailored for ThermalMR theranostics of brain tumors.
Collapse
Affiliation(s)
- Nandita Saha
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Andre Kuehne
- MRI.TOOLS GmbH, 13125 Berlin, Germany
- Brightmind.AI GmbH, 1010 Vienna, Austria
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
| | - Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- MRI.TOOLS GmbH, 13125 Berlin, Germany
| |
Collapse
|
7
|
Lu M, Zhang X, Chai S, Yan X. Improving Specific Absorption Rate Efficiency and Coil Robustness of Self-Decoupled Transmit/Receive Coils by Elevating Feed and Mode Conductors. SENSORS (BASEL, SWITZERLAND) 2023; 23:1800. [PMID: 36850397 PMCID: PMC9960379 DOI: 10.3390/s23041800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Self-decoupling technology was recently proposed for radio frequency (RF) coil array designs. Here, we propose a novel geometry to reduce the peak local specific absorption rate (SAR) and improve the robustness of the self-decoupled coil. We first demonstrate that B1 is determined by the arm conductors, while the maximum E-field and local SAR are determined by the feed conductor in a self-decoupled coil. Then, we investigate how the B1, E-field, local SAR, SAR efficiency, and coil robustness change with respect to different lift-off distances for feed and mode conductors. Next, the simulation of self-decoupled coils with optimal lift-off distances on a realistic human body is performed. Finally, self-decoupled coils with optimal lift-off distances are fabricated and tested on the workbench and MRI experiments. The peak 10 g-averaged SAR of the self-decoupled coil on the human body can be reduced by 34% by elevating the feed conductor. Less coil mismatching and less resonant frequency shift with respect to loadings were observed by elevating the mode conductor. Both the simulation and experimental results show that the coils with elevated conductors can preserve the high interelement isolation, B1+ efficiency, and SNR of the original self-decoupled coils.
Collapse
Affiliation(s)
- Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyang Zhang
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Shuyang Chai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Hakim ML, Islam MT, Alam T, Abdul Rahim SK, Bais B, Islam MS, Soliman MS. Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:222. [PMID: 36677975 PMCID: PMC9861934 DOI: 10.3390/nano13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This article proposes a square split-ring resonator (SSRR) metamaterial absorber (MMA) for sub-6 GHz application. The unit cell of the MMA was designed and fabricated on commercially available low-cost FR-4 substrate material with a dielectric constant o 4.3. The higher effective medium ratio (EMR) of the designed unit cell shows the compactness of the MMA. The dimension of the unit cell is 9.5 × 9.5 × 1.6 mm3, which consists of two split rings and two arms with outer SSRR. The proposed MMA operates at 2.5 GHz, 4.9 GHz, and 6 GHz frequency bands with a 90% absorption peak and shows a single negative metamaterial property. The E-field, H-field, and surface current are also explored in support of absorption analysis. Moreover, the equivalent circuit model of the proposed MMA is modelled and simulated to validate the resonance behavior of the MMA structure. Finally, the proposed MMA can be used for the specific frequency bands of 5G applications such as signal absorption, crowdsensing, SAR reduction, etc.
Collapse
Affiliation(s)
- Mohammad Lutful Hakim
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohammad Tariqul Islam
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Department of Computer Science and Engineering (CSE), International Islamic University Chittagong (IIUC), Kumira, Chattogram 4318, Bangladesh
| | | | - Badariah Bais
- Faculty of Engineering (FOE), Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia
| | - Md. Shabiul Islam
- Faculty of Engineering (FOE), Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia
| | - Mohamed S. Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt
| |
Collapse
|
9
|
Sokol SL, Colwell ZA, Kandala SK, Imani MF, Sohn SM. Flexible Metamaterial Wrap for Improved Head Imaging at 3 T MRI With Low-Cost and Easy Fabrication Method. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2022; 21:2075-2079. [PMID: 36388763 PMCID: PMC9648536 DOI: 10.1109/lawp.2022.3190696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Magnetic resonance imaging (MRI) requires spatial uniformity of the radiofrequency (RF) field inside the subject for maximum signal-to-noise ratio (SNR) and image contrast. Bulky high permittivity dielectric pads (HPDPs) focus magnetic fields into the region of interest (ROI) and increase RF field uniformity when placed between the patient and RF coils in the MR scanner. Metamaterials could replace HPDPs and reduce system bulkiness, but those in the literature often require a complicated fabrication process and cannot conform to patient body shape. Proposed is a flexible metamaterial for brain imaging made with a scalable fabrication process using conductive paint and a plastic laminate substrate. The effects of single and double-sided placement of the metamaterial around a human head phantom were investigated in a 3 T scanner. When two metamaterial sheets were wrapped around a head phantom (double-sided placement), the total average signal in the resulting image increased by 10.14% compared to placing a single metamaterial sheet underneath the phantom (single-sided placement). The difference between the maximum and minimum signal intensity values decreased by 57% in six different ROIs with double-sided placement compared to single-sided placement.
Collapse
Affiliation(s)
- Samantha L Sokol
- Dept. of Elect. Eng., Sch. of Elect. Comput. & Energy Eng. Arizona State Univ. Tempe, AZ, USA
| | - Zachary A Colwell
- School of Biological and Health Sciences Arizona State Univ. Tempe, AZ, USA
| | - Sri Kirthi Kandala
- School of Biological and Health Sciences Arizona State Univ. Tempe, AZ, USA
| | - Mohammadreza F Imani
- Dept. of Elect. Eng., Sch. of Elect. Comput. & Energy Eng. Arizona State Univ. Tempe, AZ, USA
| | - Sung-Min Sohn
- School of Biological and Health Sciences Arizona State Univ. Tempe, AZ, USA
| |
Collapse
|
10
|
Hannan S, Islam MT, Soliman MS, Faruque MRI, Misran N, Islam MS. A co-polarization-insensitive metamaterial absorber for 5G n78 mobile devices at 3.5 GHz to reduce the specific absorption rate. Sci Rep 2022; 12:11193. [PMID: 35778453 PMCID: PMC9249790 DOI: 10.1038/s41598-022-15221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Specific absorption rate (SAR) by next-generation 5G mobile devices has become a burning question among engineers worldwide. 5G communication devices will be famous worldwide due to high-speed data transceiving, IoT-based mass applications, etc. Many antenna systems are being proposed for such mobile devices, but SAR is found at a higher rate that requires reduced for human health. This paper presents a metamaterial absorber (MMA) for SAR reduction from 5G n78 mobile devices at 3.5 GHz. The MMA is co-polarization insensitive at all possible incident angles to ensure absorption of unnecessary EM energies obeying the Poynting theorem for energy conservation and thus ensuring smooth communication by the devices. The unit cell size of the absorber is 0.114 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda$$\end{document}λ making it design efficient for array implementation into mobile devices. This absorber has achieved a minimum of 33% reduction of SAR by applying to the 5G n78 mobile phone model, equivalent to SAR by GSM/LTE/UMTS band mobile phones and making it suitable for SAR reduction from next-generation 5G mobile devices.
Collapse
Affiliation(s)
- Saif Hannan
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia. .,Department of Electronic and Telecommunication Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Mohammad Tariqul Islam
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Kingdom of Saudi Arabia.,Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | | | - Norbahiah Misran
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Md Shabiul Islam
- Faculty of Engineering, Multimedia University (MMU), 63100, Cyberjaya, Selangor, Malaysia
| |
Collapse
|
11
|
Seo JH, Chung JY. A Preliminary Study for Reference RF Coil at 11.7 T MRI: Based on Electromagnetic Field Simulation of Hybrid-BC RF Coil According to Diameter and Length at 3.0, 7.0 and 11.7 T. SENSORS 2022; 22:s22041512. [PMID: 35214409 PMCID: PMC8875900 DOI: 10.3390/s22041512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) systems must undergo quantitative evaluation through daily and periodic performance assessments. In general, the reference or standard radiofrequency (RF) coils for these performance assessments of 1.5 to 7.0 T MRI systems have been low-pass-type birdcage (LP-BC) RF coils. However, LP-BC RF coils are inappropriate for use as reference RF coils because of their relatively lower magnetic field (B1-field) sensitivity than other types of BC RF coils, especially in ultrahigh-field (UHF) MRI systems above 3.0 T. Herein, we propose a hybrid-type BC (Hybrid-BC) RF coil as a reference RF coil with improved B1-field sensitivity in UHF MRI system and applied it to an 11.7 T MRI system. An electromagnetic field (EM-field) analysis on the Hybrid-BC RF coil was performed to provide the proper dimensions for its use as a reference RF coil. Commercial finite difference time-domain program was used in EM-field simulation, and home-made analysis programs were used in analysis. The optimal specifications of the proposed Hybrid-BC RF coils for them to qualify as reference RF coils are proposed based on their B1+-field sensitivity under unnormalized conditions, as well as by considering their B1+-field uniformity and RF safety under normalized conditions.
Collapse
Affiliation(s)
- Jeung-Hoon Seo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Korea;
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-822-5361; Fax: +82-32-822-8251
| |
Collapse
|
12
|
Realization of frequency hopping characteristics of an epsilon negative metamaterial with high effective medium ratio for multiband microwave applications. Sci Rep 2021; 11:16898. [PMID: 34413377 PMCID: PMC8376933 DOI: 10.1038/s41598-021-96228-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023] Open
Abstract
In this paper, a meander-lines-based epsilon negative (ENG) metamaterial (MTM) with a high effective medium ratio (EMR) and near-zero refractive index (NZI) is designed and investigated for multiband microwave applications. The metamaterial unit cell is a modification of the conventional square split-ring resonator in which the meander line concept is utilized. The meander line helps to increase the electrical length of the rings and provides strong multiple resonances within a small dimension. The unit cell of proposed MTM is initiated on a low-cost FR4 substrate of 1.5 mm thick and electrical dimension of 0.06λ × 0.06λ, where wavelength, λ is calculated at the lowest resonance frequency (2.48 GHz). The MTM provides four major resonances of transmission coefficient (S21) at 2.48, 4.28, 9.36, and 13.7 GHz covering S, C, X, and Ku bands. It shows negative permittivity, near-zero permeability, and near-zero refractive index in the vicinity of these resonances. The equivalent circuit is designed and modeled in Advanced Design System (ADS) software. The simulated S21 of the MTM unit cell is compared with the measured one and both show close similarity. The array performance of the MTM is also evaluated by using 2 × 2, 4 × 4, and 8 × 8 arrays that show close resemblance with the unit cell. The MTM offers a high effective medium ratio (EMR) of 15.1, indicating the design's compactness. The frequency hopping characteristics of the proposed MTM is investigated by open and short-circuited the three outer rings split gaps by using three switches. Eight different combinations of the switching states provide eight different sets of multiband resonances within 2–18 GHz; those give the flexibility of using the proposed MTM operating in various frequency bands. For its small dimension, NZI, high EMR, and frequency hopping characteristics through switching, this metamaterial can be utilized for multiband microwave applications, especially to enhance the gain of multiband antennas.
Collapse
|