1
|
Pavan-Guimaraes J, Devos L, Lascaris B, de Meijer VE, Monbaliu D, Jochmans I, Pulitano C, Porte RJ, Martins PN. Long-Term Liver Machine Perfusion Preservation: A Review of Recent Advances, Benefits and Logistics. Artif Organs 2025; 49:339-352. [PMID: 39895504 DOI: 10.1111/aor.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The global shortage of suitable donor livers for transplantation has prompted efforts to expand the donor pool by using extended criteria donors. Machine preservation technology has shown promise in optimizing graft preservation and improving logistics. Additionally, it holds potential for organ repair, regeneration, therapeutic applications during extended preservation periods, and enhancing organ allocation. METHODS We conducted a comprehensive literature review using PubMed, Embase, and Web of Science databases. All studies published between January 1, 2022, and February 7, 2024, that described machine perfusion preservation of livers for more than 24 h were eligible for inclusion. The findings were synthesized in a narrative review format to highlight key benefits and advancements. RESULTS We identified eleven studies from multiple research groups, employing various techniques, devices, and preservation durations. Perfusion durations ranged from 1 to 13 days, with notable variations in protocols for long-term preservation beyond 24 h. Viability was assessed during perfusion only. No livers were transplanted. Among the reviewed studies, the introduction of a dialysis system emerged as the most effective strategy for managing waste accumulation during long-term liver perfusion. Differences were also observed in hemodynamics, oxygenation, organ chambers, supplemental regimens, and glycemic control. CONCLUSION Over the past two years, substantial progress has been made in refining protocols for long-term liver machine perfusion, with significant advancements in waste management, enabling successful multi-day perfusions. While these developments are promising, further research is necessary to standardize and optimize long-term perfusion protocols, establishing a reliable platform for both organ preservation and therapeutic applications.
Collapse
Affiliation(s)
| | - Lene Devos
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Bianca Lascaris
- Section of HPB Surgery and Liver Transplantation, UMCG Comprehensive Transplant Center, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of HPB Surgery and Liver Transplantation, UMCG Comprehensive Transplant Center, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Carlo Pulitano
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Robert J Porte
- Division of HPB and Transplant Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paulo N Martins
- Department of Surgery, Transplant Institute, University of Oklahoma, Oklahoma City, Oklahoma, USA
| |
Collapse
|
2
|
Clarke G, Mao J, Hann A, Fan Y, Gupta A, Nutu A, Buckel Schaffner E, Kayani K, Murphy N, Bangash MN, Casey AL, Wootton I, Lawson AJ, Dasari BVM, Perera MTPR, Mergental H, Afford SC. A reproducible extended ex-vivo normothermic machine liver perfusion protocol utilising improved nutrition and targeted vascular flows. COMMUNICATIONS MEDICINE 2024; 4:214. [PMID: 39448795 PMCID: PMC11502869 DOI: 10.1038/s43856-024-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Normothermic machine perfusion of donor livers has become standard practice in the field of transplantation, allowing the assessment of organs and safe extension of preservation times. Alongside its clinical uses, there has been expanding interest in extended normothermic machine perfusion (eNMP) of livers as a potential vehicle for medical research. Reproducible extended normothermic machine perfusion has remained elusive due to its increased complexity and monitoring requirements. We set out to develop a reproducible protocol for the extended normothermic machine perfusion of whole human livers. METHODS Human livers declined for transplantation were perfused using a blood-based perfusate at 36 °C using the Liver Assist device (XVIVO, Sweden), with continuous veno-venous haemofiltration in-parallel. We developed the protocol in a stepwise fashion. RESULTS Perfusion techniques utilised included: targeted physiological vascular flows, phosphate replacement (to prevent hypophosphataemia), N-acetylcysteine (to prevent methaemoglobin accumulation), and the utilisation of sodium lactate as both a nutritional source and real-time measure of hepatocyte function. All five human livers perfused with the developed protocol showed preserved function with a median perfusion time of 168 h (range 120-184 h), with preserved viability throughout. CONCLUSIONS Livers can be reproducibly perfused in excess of 120 (range 121-184) hours with evidence of preserved hepatocyte and cholangiocyte function.
Collapse
Affiliation(s)
- George Clarke
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK.
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK.
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK.
| | - Jingwen Mao
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Angus Hann
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Yiyu Fan
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | | | - Anisa Nutu
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | | | - Kayani Kayani
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
- Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Nicholas Murphy
- Intensive Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TH, UK
| | - Mansoor N Bangash
- Intensive Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TH, UK
| | - Anna L Casey
- Microbiology Department, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Isla Wootton
- Clinical Biochemistry, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Alexander J Lawson
- Clinical Biochemistry, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Bobby V M Dasari
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Simon C Afford
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| |
Collapse
|
3
|
Schuler MJ, Becker D, Mueller M, Bautista Borrego L, Mancina L, Huwyler F, Binz J, Hagedorn C, Schär B, Gygax E, Weisskopf M, Sousa Da Silva RX, Antunes Crisóstomo JM, Dutkowski P, Rudolf von Rohr P, Clavien PA, Tibbitt MW, Eshmuminov D, Hefti M. Observations and findings during the development of a subnormothermic/normothermic long-term ex vivo liver perfusion machine. Artif Organs 2023; 47:317-329. [PMID: 36106378 DOI: 10.1111/aor.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ex situliver machine perfusion at subnormothermic/normothermic temperature isincreasingly applied in the field of transplantation to store and evaluateorgans on the machine prior transplantation. Currently, various perfusionconcepts are in clinical and preclinical applications. Over the last 6 years ina multidisciplinary team, a novel blood based perfusion technology wasdeveloped to keep a liver alive and metabolically active outside of the bodyfor at least one week. METHODS Within thismanuscript, we present and compare three scenarios (Group 1, 2 and 3) we werefacing during our research and development (R&D) process, mainly linked tothe measurement of free hemoglobin and lactate in the blood based perfusate. Apartfrom their proven value in liver viability assessment (ex situ), these twoparameters are also helpful in R&D of a long-term liver perfusion machine and moreover supportive in the biomedical engineering process. RESULTS Group 1 ("good" liver on the perfusion machine) represents the best liver clearance capacity for lactate and free hemoglobin wehave observed. In contrast to Group 2 ("poor" liver on the perfusion machine), that has shown the worst clearance capacity for free hemoglobin. Astonishingly,also for Group 2, lactate is cleared till the first day of perfusion andafterwards, rising lactate values are detected due to the poor quality of theliver. These two perfusate parametersclearly highlight the impact of the organ quality/viability on the perfusion process. Whereas Group 3 is a perfusion utilizing a blood loop only (without a liver). CONCLUSION Knowing the feasible ranges (upper- and lower bound) and the courseover time of free hemoglobin and lactate is helpful to evaluate the quality ofthe organ perfusion itself and the maturity of the developed perfusion device. Freehemoglobin in the perfusate is linked to the rate of hemolysis that indicates how optimizing (gentle blood handling, minimizing hemolysis) the perfusion machine actually is. Generally, a reduced lactate clearancecapacity can be an indication for technical problems linked to the blood supplyof the liver and therefore helps to monitor the perfusion experiments.Moreover, the possibility is given to compare, evaluate and optimize developed liverperfusion systems based on the given ranges for these two parameters. Otherresearch groups can compare/quantify their perfusate (blood) parameters withthe ones in this manuscript. The presented data, findings and recommendations willfinally support other researchers in developing their own perfusion machine ormodifying commercially availableperfusion devices according to their needs.
Collapse
Affiliation(s)
- Martin J Schuler
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Leandro Mancina
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian Huwyler
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jonas Binz
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Catherine Hagedorn
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Beatrice Schär
- Entwicklung biomedizinische Anwendungen, Securecell AG, Urdorf, Switzerland
| | - Erich Gygax
- Forschung und Entwicklung, Fumedica AG, Muri, Switzerland
| | - Miriam Weisskopf
- Center of Surgical Research, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Richard Xavier Sousa Da Silva
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Philipp Dutkowski
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Dilmurodjon Eshmuminov
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Krüger M, Ruppelt A, Kappler B, Van Soest E, Samsom RA, Grinwis GCM, Geijsen N, Helms JB, Stijnen M, Kock LM, Rasponi M, Kooistra HS, Spee B. Normothermic Ex Vivo Liver Platform Using Porcine Slaughterhouse Livers for Disease Modeling. Bioengineering (Basel) 2022; 9:bioengineering9090471. [PMID: 36135018 PMCID: PMC9495507 DOI: 10.3390/bioengineering9090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic and toxic liver disorders, such as fatty liver disease (steatosis) and drug-induced liver injury, are highly prevalent and potentially life-threatening. To allow for the study of these disorders from the early stages onward, without using experimental animals, we collected porcine livers in a slaughterhouse and perfused these livers normothermically. With our simplified protocol, the perfused slaughterhouse livers remained viable and functional over five hours of perfusion, as shown by hemodynamics, bile production, indocyanine green clearance, ammonia metabolism, gene expression and histology. As a proof-of-concept to study liver disorders, we show that an infusion of free fatty acids and acetaminophen results in early biochemical signs of liver damage, including reduced functionality. In conclusion, the present platform offers an accessible system to perform research in a functional, relevant large animal model while avoiding using experimental animals. With further improvements to the model, prolonged exposure could make this model a versatile tool for studying liver diseases and potential treatments.
Collapse
Affiliation(s)
- Melanie Krüger
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Alicia Ruppelt
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
- Correspondence:
| | | | | | - Roos Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Guy C. M. Grinwis
- Veterinary Pathology Diagnostic Centre, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Niels Geijsen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Marco Stijnen
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
| | - Linda M. Kock
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Marco Rasponi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
5
|
Lopez-Lopez V, Garcia-Lopez J, Eshmuminov D, Brusadin R, Lopez-Conesa A, Martinez-Insfran L, Fernández-Fernández P, Robles-Campos R. Left renal vein graft and in situ hepatic perfusion in hepatectomy for complete tumor invasion of hepatic veins: hemodynamic optimization and surgical technique. Langenbecks Arch Surg 2022; 407:1-7. [PMID: 35102435 PMCID: PMC9283147 DOI: 10.1007/s00423-022-02451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/20/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Assessing hepatic vein reconstruction using a left renal vein graft and in situ hypothermic liver perfusion in an extended liver resection. METHODS Patients included in this study were those with liver tumors undergoing curative surgery with resection and reconstruction of hepatic veins. Hepatic vein was reconstructed using a left renal vein graft. We describe the technical aspects of liver resection and vascular reconstruction, the key aspects of hemodynamic management, and the use of in situ hypothermic liver preservations during liver transection (prior to and during vascular clamping). RESULTS The right hepatic vein was reconstructed with a median left renal venal graft length of 4.5 cm (IQR, 3.1-5.2). Creatinine levels remained within normal limits in the immediate postoperative phase and during follow-up. Median blood loss was 500 ml (IQR, 300-1500) and in situ perfusion with cold ischemia was 67 min (IQR, 60.5-77.5). The grafts remained patent during the follow-up with no signs of thrombosis. No major postoperative complications were observed. CONCLUSION Left renal vein graft for the reconstruction of a hepatic vein and in situ hypothermic liver perfusion are feasible during extended liver resection.
Collapse
Affiliation(s)
- Víctor Lopez-Lopez
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Hospital, IMIB-Arrixaca, Murcia, Spain.
| | - Jose Garcia-Lopez
- Department of Anesthesiology, Virgen de la Arrixaca University Hospital, IMIB, Murcia, Spain
| | - Dilmurodjon Eshmuminov
- Department of Surgery and Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital Zurich, Zurich, Switzerland
| | - Roberto Brusadin
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Hospital, IMIB-Arrixaca, Murcia, Spain
| | - Asunción Lopez-Conesa
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Hospital, IMIB-Arrixaca, Murcia, Spain
| | - Luis Martinez-Insfran
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Hospital, IMIB-Arrixaca, Murcia, Spain
| | | | - Ricardo Robles-Campos
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Hospital, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
6
|
Eshmuminov D, Hefti M, Mueller M, Schuler MJ, Bautista Borrego L, Schneider MA, Koch K, Weisskopf M, Tibbitt MW, Dutkowski P, Rudolf von Rohr P, Studt JD, Becker D, Clavien PA. Synthesis of coagulation factors during long-term ex situ liver perfusion. Artif Organs 2021; 46:273-280. [PMID: 34287985 DOI: 10.1111/aor.14041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023]
Abstract
Robust viability assessment of grafts during normothermic liver perfusion is a prerequisite for organ use. Coagulation parameters are used commonly for liver assessment in patients. However, they are not yet included in viability assessment during ex situ perfusion. In this study, we analysed coagulation parameters during one week ex situ perfusion at 34℃. Eight discarded human livers were perfused with blood-based, heparinised perfusate for one week; perfusions in a further four livers were terminated on day 4 due to massive ongoing cell death. Coagulation parameters were well below the physiologic range at perfusion start. Physiologic levels were achieved within the first two perfusion days for factor V (68.5 ± 35.5%), factor VII (83.5 ± 26.2%), fibrinogen (2.1 ± 0.4 g/L) and antithrombin (107 ± 26.5%) in the livers perfused for one week. Despite the increased production of coagulation factors, INR was detectable only at 24h of perfusion (2.1 ± 0.3) and prolonged thereafter (INR > 9). The prolongation of INR was related to the high heparin level in the perfusate (anti-FXa > 3 U/mL). Intriguingly, livers with ongoing massive cell death also disclosed synthesis of factor V and improved INR. In summary, perfused livers were able to produce coagulation factors at a physiological level ex situ. We propose that single coagulation factor analysis is more reliable for assessing the synthetic function of perfused livers as compared to INR when using a heparinised perfusate.
Collapse
Affiliation(s)
- Dilmurodjon Eshmuminov
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Martin J Schuler
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Marcel André Schneider
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Karin Koch
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Center of Surgical Research, University Hospital Zürich University of Zürich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jan-Dirk Studt
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland.,Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland.,Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Eshmuminov D, Mueller M, Brugger SD, Bautista Borrego L, Becker D, Hefti M, Hagedorn C, Duskabilova M, Tibbitt MW, Dutkowski P, Rudolf von Rohr P, Schuler MJ, Mueller NJ, Clavien PA. Sources and prevention of graft infection during long-term ex situ liver perfusion. Transpl Infect Dis 2021; 23:e13623. [PMID: 33887094 DOI: 10.1111/tid.13623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The use of normothermic liver machine perfusion to repair injured grafts ex situ is an emerging topic of clinical importance. However, a major concern is the possibility of microbial contamination in the absence of a fully functional immune system. Here, we report a standardized approach to maintain sterility during normothermic liver machine perfusion of porcine livers for one week. METHODS Porcine livers (n = 42) were procured and perfused with blood at 34°C following aseptic technique and standard operating procedures. The antimicrobial prophylaxis was adapted and improved in a step-wise manner taking into account the pathogens that were detected during the development phase. Piperacillin-Tazobactam was applied as a single dose initially and modified to continuous application in the final protocol. In addition, the perfusion machine was improved to recapitulate partially the host's defense system. The final protocol was tested for infection prevention during one week of perfusion. RESULTS During the development phase, microbial contamination occurred in 27 out of 39 (69%) livers with a mean occurrence of growth on 4 ± 1.6 perfusion days. The recovered microorganisms suggested an exogenous source of microbial contamination. The antimicrobial agents (piperacillin/tazobactam) could be maintained above the targeted minimal inhibitory concentration (8-16 mg/L) only with continuous application. In addition to continuous application of piperacillin/tazobactam, partial recapitulation of the host immune system ex situ accompanied by strict preventive measures for contact and air contamination maintained sterility during one week of perfusion. CONCLUSION The work demonstrates feasibility of sterility maintenance for one week during ex situ normothermic liver perfusion.
Collapse
Affiliation(s)
- Dilmurodjon Eshmuminov
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Catherine Hagedorn
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Muhayyo Duskabilova
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin J Schuler
- Wyss Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Nicolas J Mueller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepatopancreatobiliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|