1
|
Corti A, Dal Ferro L, Akyildiz AC, Migliavacca F, McGinty S, Chiastra C. Plaque heterogeneity influences in-stent restenosis following drug-eluting stent implantation: Insights from patient-specific multiscale modelling. J Biomech 2025; 179:112485. [PMID: 39736224 DOI: 10.1016/j.jbiomech.2024.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 01/01/2025]
Abstract
In-stent restenosis represents a major cause of failure of percutaneous coronary intervention with drug-eluting stent implantation. Computational multiscale models have recently emerged as powerful tools for investigating the mechanobiological mechanisms underlying vascular adaptation processes during in-stent restenosis. However, to date, the interplay between intervention-induced inflammation, drug delivery and drug retention has been under-investigated. Here, an original patient-specific multiscale agent-based modelling framework was developed to investigate the interplay between drug release, plaque composition and intervention-induced inflammation on in-stent restenosis following drug-eluting stent implantation. The framework integrated a finite element simulation of stent expansion, with a drug transport simulation and an agent-based model of cellular dynamics. A patient-specific coronary cross-section with heterogeneous diseased tissue was considered and rigorously analyzed through a variety of scenarios, including different plaque compositions and different inflammatory responses. The analysis revealed three significant findings: (i) calcifications substantially impeded drug transport, resulting in drug-depleted regions and reduced stent efficacy; (ii) by impacting drug transport, variations in plaque composition influenced arterial wall response, with the fully-calcific scenario showing the greatest lumen area reduction; (iii) the impact of different drug receptor saturation conditions (obtained with different plaque compositions) was particularly evident under conditions of persistent inflammatory state. This study represents a significant advancement in multiscale modelling of in-stent restenosis following drug-eluting stent implantation. The results obtained provided deeper insights into the complex interactions among patient-specific plaque composition, inflammation and drug retention, suggesting a patient-specific management of the intervention, particularly in cases of complex disease.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Lucia Dal Ferro
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, UK
| | - Ali C Akyildiz
- Department of Cardiology, Biomedical Engineering, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, UK
| | - Claudio Chiastra
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
2
|
Li L, Dai F, Xu J, Dong J, Wu B, He S, Liu H. Geometric consistency among atherosclerotic plaques in carotid arteries evaluated by multidimensional parameters. Heliyon 2024; 10:e37419. [PMID: 39309847 PMCID: PMC11414503 DOI: 10.1016/j.heliyon.2024.e37419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
The three-dimensional (3D) geometry of carotid atherosclerotic plaques is associated with multiple cardiovascular diseases. However, it is unknown if carotid plaques of different sizes are consistent in 3D geometry, with a lack of quantitative observation. We aim to evaluate the geometric consistency of carotid plaques using the correlations between multidimensional parameters. 42 cases with asymptomatic stenosis caused by atherosclerotic plaque in the carotid artery were included. Carotid plaques and calcifications were identified on computed tomography angiography images and 3D reconstructed. Multidimensional geometric parameters (length, surface area, volume, etc.) were measured on the reconstructed 3D structures. Linear and non-linear (power function) fittings were used to investigate the relationships between multidimensional parameters. The analysis was performed based on cases and plaques, respectively. Spearman rank correlation analysis, R-squared, and p-values were used to evaluate the significance of the relationship. Significant relationship was defined as R-squared >0.25 and p < 0.05. In total, 112 atherosclerotic plaques and 74 calcifications were extracted. In plaque-based analysis, significant correlations were widely observed between paired multidimensional parameters of carotid plaques, where non-linear fitting showed higher R-squared values. Plaque volume and surface area were significantly correlated with total volume and total surface area of intra-plaque calcifications. In subject-based analysis, triglycerides and total cholesterol were significantly correlated with carotid plaque size. There is a consistency in geometry among carotid atherosclerotic plaques of different sizes. The size of a carotid plaque is associated with the patient's lipid profile.
Collapse
Affiliation(s)
- Ling Li
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, Zhejiang Province, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| | - Fangyu Dai
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Jie Xu
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Jiaoxuan Dong
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Wu
- Department of Neurology, People's Hospital of Quzhou, Quzhou, 324002, Zhejiang Province, China
| | - Songbin He
- Department of Neurology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, Zhejiang Province, China
- Department of Neurology, Zhoushan Hospital, Zhejiang University, School of Medicine, Zhoushan, 316000, Zhejiang Province, China
| | - Haipeng Liu
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, UK
| |
Collapse
|
3
|
Fu F, Liu X, Zhang R, Zhang S, Mao J, Li Y, Wan S, Xu S. Prevalence and clinical implications of calcification in internal carotid artery stenosis: a retrospective study. BMC Neurol 2024; 24:279. [PMID: 39127616 DOI: 10.1186/s12883-024-03788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Calcification is common in advanced atheromatous plaque, but its clinical significance remains unclear. This study aimed to assess the prevalence of plaque calcification in the moderate-to-severe internal carotid artery stenosis and investigate its relationship with ipsilateral ischemia. METHODS The retrospective study included 178 patients detected with proximal internal carotid artery (pICA) stenosis of ≥ 50% on multidetector computed tomography at Zhejiang Hospital from January 2019 to March 2023. Association between plaque calcification characteristics (calcification thickness, position, type, circumferential extent, calcium volume and calcium score) and ipsilateral cerebrovascular events was analyzed. RESULTS The 178 patients (mean age 71.24 ± 10.02 years, 79.78% males) had 224 stenosed pICAs overall. Plaque calcification was noted in 200/224 (89.29%) arteries. Calcification rates were higher in older age-groups. Calcification volume (r = 0.219, p < 0.001) and calcification score (r = 0.230, p < 0.001) were correlated with age. Ipsilateral ischemic events were significantly more common in the noncalcification group than in the calcification group (χ2 = 4.160, p = 0.041). The most common calcification type was positive rim sign calcification (87/200, 43.50%), followed by bulky calcification (66/200, 33.00%); both were significantly associated with ischemic events (χ2 = 10.448, p = 0.001 and χ2 = 4.552, p = 0.033, respectively). Calcification position, thickness, and circumferential extent, and calcification volume and score, were not associated with ischemic events. In multivariate analysis, positive rim signs (OR = 2.795, 95%CI 1.182-6.608, p = 0.019) was an independent predictor of ischemic events. CONCLUSIONS Plaque calcification in proximal internal carotid artery is common, and prevalence increases with age. Calcification characteristics could be predictive of ipsilateral ischemic events. The positive rim sign within plaque is a high-risk factor for a future ischemic event.
Collapse
Affiliation(s)
- Fengli Fu
- Radiology Department, Zhejiang Hospital, Hangzhou, 310030, China
| | - Xiaoli Liu
- Neurology Department, Zhejiang Hospital, Hangzhou, 310030, China
- Zhejiang Province Engineering Research Center for Precision Medicine in Cerebrovascular Diseases, Hangzhou, 310030, China
| | - Rui Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical School, Hangzhou, 310053, China
| | - Siran Zhang
- Neurology Department, Zhejiang Hospital, Hangzhou, 310030, China
| | - Jianhua Mao
- Radiology Department, Zhejiang Hospital, Hangzhou, 310030, China
| | - Yan Li
- Neurology Department, Zhejiang Hospital, Hangzhou, 310030, China
| | - Shu Wan
- Zhejiang Province Engineering Research Center for Precision Medicine in Cerebrovascular Diseases, Hangzhou, 310030, China.
- Brain Center, Zhejiang Hospital, Hangzhou, 310030, China.
| | - Shanhu Xu
- Neurology Department, Zhejiang Hospital, Hangzhou, 310030, China.
- Zhejiang Province Engineering Research Center for Precision Medicine in Cerebrovascular Diseases, Hangzhou, 310030, China.
| |
Collapse
|
4
|
Jansen I, Cahalane R, Hengst R, Akyildiz A, Farrell E, Gijsen F, Aikawa E, van der Heiden K, Wissing T. The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics. Basic Res Cardiol 2024; 119:193-213. [PMID: 38329498 PMCID: PMC11008085 DOI: 10.1007/s00395-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.
Collapse
Affiliation(s)
- Imke Jansen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rachel Cahalane
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ranmadusha Hengst
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ali Akyildiz
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Frank Gijsen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim van der Heiden
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamar Wissing
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Huang X, Zhang S, Fu W, Wang L, Liu Z, Tang Y, Gao W, Tang B. In Situ Imaging of GGT and HOBr-Triggered Atherosclerotic Plaque Rupture via Activating the RunX2/Col IV Signaling Pathway. Anal Chem 2024; 96:4138-4145. [PMID: 38426857 DOI: 10.1021/acs.analchem.3c05073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Calcification and abnormal collagen deposition within blood vessels constitute causative factors for atherosclerotic plaque rupture, and their occurrence is intimately linked with γ-glutamyltranspeptidase (GGT) and hypobromous acid (HOBr). However, the underlying regulatory mechanisms of GGT and HOBr in plaque rupture remain unclear. Hence, we developed a dual-responsive near-infrared (NIR) fluorescent probe (BOC-H) that effectively avoids spectral crosstalk for the in situ visualization of the fluctuations in GGT and HOBr levels during atherosclerotic plaque rupture. We found that both GGT and HOBr contents increase significantly in the calcification models of cells and animals. The overexpressed GGT participated in intracellular oxygen-promoting behavior, which obviously upregulated the expression of RunX2 and Col IV by facilitating H2O2 and HOBr secretion. This process triggered calcification and abnormal collagen deposition within the plaque, which raised the risk of plaque rupture. PM2.5-induced arteriosclerotic calcification models further verified the results that GGT and HOBr accelerate plaque rupture via activation of the RunX2/Col IV signaling pathway. Moreover, the assessment of GGT and HOBr in serum samples from patients with acute myocardial infarction further confirmed the co-regulation of GGT and HOBr in the plaque rupture. Together, our studies highlight the involvement of GGT and HOBr in driving plaque rupture and offer new targets for the prevention and treatment of acute cardiovascular disease.
Collapse
Affiliation(s)
- Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Shengyue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Wei Fu
- Department of pharmacy, ZiBo Central Hospital, Zibo 255000, P. R. China
| | - Liping Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, Shandong, People's Republic of China
| |
Collapse
|
6
|
Latorre ÁT, Martínez MA, Peña E. Characterizing atherosclerotic tissues: in silico analysis of mechanical properties using intravascular ultrasound and inverse finite element methods. Front Bioeng Biotechnol 2023; 11:1304278. [PMID: 38152285 PMCID: PMC10751321 DOI: 10.3389/fbioe.2023.1304278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Atherosclerosis is a prevalent cause of acute coronary syndromes that consists of lipid deposition inside the artery wall, creating an atherosclerotic plaque. Early detection may prevent the risk of plaque rupture. Nowadays, intravascular ultrasound (IVUS) is the most common medical imaging technology for atherosclerotic plaque detection. It provides an image of the section of the coronary wall and, in combination with new techniques, can estimate the displacement or strain fields. From these magnitudes and by inverse analysis, it is possible to estimate the mechanical properties of the plaque tissues and their stress distribution. In this paper, we presented a methodology based on two approaches to characterize the mechanical properties of atherosclerotic tissues. The first approach estimated the linear behavior under particular pressure. In contrast, the second technique yielded the non-linear hyperelastic material curves for the fibrotic tissues across the complete physiological pressure range. To establish and validate this method, the theoretical framework employed in silico models to simulate atherosclerotic plaques and their IVUS data. We analyzed different materials and real geometries with finite element (FE) models. After the segmentation of the fibrotic, calcification, and lipid tissues, an inverse FE analysis was performed to estimate the mechanical response of the tissues. Both approaches employed an optimization process to obtain the mechanical properties by minimizing the error between the radial strains obtained from the simulated IVUS and those achieved in each iteration. The second methodology was successfully applied to five distinct real geometries and four different fibrotic tissues, getting median R 2 of 0.97 and 0.92, respectively, when comparing the real and estimated behavior curves. In addition, the last technique reduced errors in the estimated plaque strain field by more than 20% during the optimization process, compared to the former approach. The findings enabled the estimation of the stress field over the hyperelastic plaque tissues, providing valuable insights into its risk of rupture.
Collapse
Affiliation(s)
- Álvaro T. Latorre
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Miguel A. Martínez
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
7
|
Straughan R, Kadry K, Parikh SA, Edelman ER, Nezami FR. Fully automated construction of three-dimensional finite element simulations from Optical Coherence Tomography. Comput Biol Med 2023; 165:107341. [PMID: 37611423 PMCID: PMC10528179 DOI: 10.1016/j.compbiomed.2023.107341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Despite recent advances in diagnosis and treatment, atherosclerotic coronary artery diseases remain a leading cause of death worldwide. Various imaging modalities and metrics can detect lesions and predict patients at risk; however, identifying unstable lesions is still difficult. Current techniques cannot fully capture the complex morphology-modulated mechanical responses that affect plaque stability, leading to catastrophic failure and mute the benefit of device and drug interventions. Finite Element (FE) simulations utilizing intravascular imaging OCT (Optical Coherence Tomography) are effective in defining physiological stress distributions. However, creating 3D FE simulations of coronary arteries from OCT images is challenging to fully automate given OCT frame sparsity, limited material contrast, and restricted penetration depth. To address such limitations, we developed an algorithmic approach to automatically produce 3D FE-ready digital twins from labeled OCT images. The 3D models are anatomically faithful and recapitulate mechanically relevant tissue lesion components, automatically producing morphologies structurally similar to manually constructed models whilst including more minute details. A mesh convergence study highlighted the ability to reach stress and strain convergence with average errors of just 5.9% and 1.6% respectively in comparison to FE models with approximately twice the number of elements in areas of refinement. Such an automated procedure will enable analysis of large clinical cohorts at a previously unattainable scale and opens the possibility for in-silico methods for patient specific diagnoses and treatment planning for coronary artery disease.
Collapse
Affiliation(s)
- Ross Straughan
- Cardiac Surgery Division, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA; Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Karim Kadry
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, 02139, MA, USA.
| | - Sahil A Parikh
- Division of Cardiology, Columbia University Irving Medical Center, New York, 10032, NY, USA.
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, 02139, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Farhad R Nezami
- Cardiac Surgery Division, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| |
Collapse
|
8
|
Tornifoglio B, Johnston RD, Stone AJ, Kerskens C, Lally C. Microstructural and mechanical insight into atherosclerotic plaques: an ex vivo DTI study to better assess plaque vulnerability. Biomech Model Mechanobiol 2023; 22:1515-1530. [PMID: 36652053 PMCID: PMC10511397 DOI: 10.1007/s10237-022-01671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
Non-invasive microstructural characterisation has the potential to determine the stability, or lack thereof, of atherosclerotic plaques and ultimately aid in better assessing plaques' risk to rupture. If linked with mechanical characterisation using a clinically relevant imaging technique, mechanically sensitive rupture risk indicators could be possible. This study aims to provide this link-between a clinically relevant imaging technique and mechanical characterisation within human atherosclerotic plaques. Ex vivo diffusion tensor imaging, mechanical testing, and histological analysis were carried out on human carotid atherosclerotic plaques. DTI-derived tractography was found to yield significant mechanical insight into the mechanical properties of more stable and more vulnerable microstructures. Coupled with insights from digital image correlation and histology, specific failure characteristics of different microstructural arrangements furthered this finding. More circumferentially uniform microstructures failed at higher stresses and strains when compared to samples which had multiple microstructures, like those seen in a plaque cap. The novel findings in this study motivate diagnostic measures which use non-invasive characterisation of the underlying microstructure of plaques to determine their vulnerability to rupture.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R D Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A J Stone
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Medical Physics and Clinical Engineering, St. Vincent's University Hospital, Dublin, Ireland
| | - C Kerskens
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
The Need to Shift from Morphological to Structural Assessment for Carotid Plaque Vulnerability. Biomedicines 2022; 10:biomedicines10123038. [PMID: 36551791 PMCID: PMC9776071 DOI: 10.3390/biomedicines10123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Degree of luminal stenosis is generally considered to be an important indicator for judging the risk of atherosclerosis burden. However, patients with the same or similar degree of stenosis may have significant differences in plaque morphology and biomechanical factors. This study investigated three patients with carotid atherosclerosis within a similar range of stenosis. Using our developed fluid-structure interaction (FSI) modelling method, this study analyzed and compared the morphological and biomechanical parameters of the three patients. Although their degrees of carotid stenosis were similar, the plaque components showed a significant difference. The distribution range of time-averaged wall shear stress (TAWSS) of patient 2 was wider than that of patient 1 and patient 3. Patient 2 also had a much smaller plaque stress compared to the other two patients. There were significant differences in TAWSS and plaque stresses among three patients. This study suggests that plaque vulnerability is not determined by a single morphological factor, but rather by the combined structure. It is necessary to transform the morphological assessment into a structural assessment of the risk of plaque rupture.
Collapse
|
10
|
Tornifoglio B, Stone AJ, Kerskens C, Lally C. Ex Vivo Study Using Diffusion Tensor Imaging to Identify Biomarkers of Atherosclerotic Disease in Human Cadaveric Carotid Arteries. Arterioscler Thromb Vasc Biol 2022; 42:1398-1412. [PMID: 36172867 PMCID: PMC9592180 DOI: 10.1161/atvbaha.122.318112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study aims to address the potential of ex vivo diffusion tensor imaging to provide insight into the microstructural composition and morphological arrangement of aged human atherosclerotic carotid arteries. METHODS In this study, whole human carotid arteries were investigated both anatomically and by comparing healthy and diseased regions. Nonrigid image registration was used with unsupervised segmentation to investigate the influence of elastin, collagen, cell density, glycosaminoglycans, and calcium on diffusion tensor imaging derived metrics (fractional anisotropy and mean diffusivity). Early stage atherosclerotic features were also investigated in terms of microstructural components and diffusion tensor imaging metrics. RESULTS All vessels displayed a dramatic decrease in fractional anisotropy compared with healthy animal arterial tissue, while the mean diffusivity was sensitive to regions of advanced disease. Elastin content strongly correlated with both fractional anisotropy (r>0.7, P<0.001) and mean diffusivity (r>-0.79, P<0.0002), and the thickened intima was also distinguishable from arterial media by these metrics. CONCLUSIONS These different investigations point to the potential of diffusion tensor imaging to identify characteristics of arterial disease progression, at early and late-stage lesion development.
Collapse
Affiliation(s)
- Brooke Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland
| | - Alan J. Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Department of Medical Physics and Clinical Engineering, St. Vincent’s University Hospital, Dublin, Ireland (A.J.S.)
| | - Christian Kerskens
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Trinity College Institute of Neuroscience (C.K.), Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin (C.L.), Ireland
| |
Collapse
|
11
|
Buckler AJ, van Wanrooij M, Andersson M, Karlöf E, Matic LP, Hedin U, Gasser TC. Patient-specific biomechanical analysis of atherosclerotic plaques enabled by histologically validated tissue characterization from computed tomography angiography: A case study. J Mech Behav Biomed Mater 2022; 134:105403. [PMID: 36049368 DOI: 10.1016/j.jmbbm.2022.105403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 03/06/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Rupture of unstable atherosclerotic plaques with a large lipid-rich necrotic core and a thin fibrous cap cause myocardial infarction and stroke. Yet it has not been possible to assess this for individual patients. Clinical guidelines still rely on use of luminal narrowing, a poor indicator but one that persists for lack of effective means to do better. We present a case study demonstrating the assessment of biomechanical indices pertaining to plaque rupture risk non-invasively for individual patients enabled by histologically validated tissue characterization. METHODS Routinely acquired clinical images of plaques were analyzed to characterize vascular wall tissues using software validated by histology (ElucidVivo, Elucid Bioimaging Inc.). Based on the tissue distribution, wall stress and strain were then calculated at spatial locations with varied fibrous cap thicknesses at diastolic, mean and systolic blood pressures. RESULTS The von Mises stress of 152 [131, 172] kPa and the equivalent strain of 0.10 [0.08, 0.12] were calculated where the fibrous cap thickness was smallest (560 μm) (95% CI in brackets). The stress at this location was at a level predictive of plaque failure. Stress and strain at locations with larger cap thicknesses were calculated to be lower, demonstrating a clinically relevant range of risk levels. CONCLUSION Patient specific tissue characterization can identify distributions of stress and strain in a clinically relevant range. This capability may be used to identify high-risk lesions and personalize treatment decisions for individual patients with cardiovascular disease and improve prevention of myocardial infarction and stroke.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, United States
| | - Max van Wanrooij
- KTH Solid Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Måns Andersson
- KTH Solid Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eva Karlöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - T Christian Gasser
- KTH Solid Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
12
|
Nooraeen A, Ghalichi F, Taghizadeh H, Guidoin R. Probing the possibility of lesion formation/progression in vicinity of a primary atherosclerotic plaque: A fluid-solid interaction study and angiographic evidences. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3605. [PMID: 35481668 DOI: 10.1002/cnm.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
It is shown that certain locations in the arterial tree, such as coronary and cerebral arteries, are more prevalent to plaque formation. Endothelial activation and consequent plaque development are attributed to local hemodynamic parameters such as wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), and stress phase angle. After a certain level of plaque progression, these hemodynamic parameters are disturbed before and after the plaque. In the current study, it is hypothesized that the vicinity of a primary lesion is susceptible for further degeneration and second plaque formation. A fluid-solid interaction (FSI) model of the coronary artery with different levels of asymmetric constriction, is simulated and the trend of hemodynamic parameters were studied in both of the plaque side (PS) and the opposite wall (facing the plaque [PF]). Also, a novel factor is introduced that can identify the high-risk regions associated with WSS oscillations to negative values. Our results indicate that when more than half of the artery is constricted, the downstream of the plaque is highly exposed to endothelial pathogenesis the PS, such that negative WSS, and as well, critical values of OSI and RRT, that is, -1.2 Pa, 0.42 and 6.5 s, respectively arise in this region. PS endothelial cells in this region exposed to the highest risk of atherosclerosis based on the proposed index (3 out of 3). As well, three cases of angiographic images are provided that confirms existence of secondary lesion close to the primary one as predicted by our computational simulations.
Collapse
Affiliation(s)
- Ahmad Nooraeen
- Tissue Mechanics Lab, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Farzan Ghalichi
- Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Hadi Taghizadeh
- Tissue Mechanics Lab, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Robert Guidoin
- Department of Surgery, Université Laval and Division of Regenerative Medicine, CHU de Québec Research Centre, Quebec, Canada
| |
Collapse
|
13
|
Guvenir Torun S, Torun HM, Hansen HHG, Gandini G, Berselli I, Codazzi V, de Korte CL, van der Steen AFW, Migliavacca F, Chiastra C, Akyildiz AC. Multicomponent Mechanical Characterization of Atherosclerotic Human Coronary Arteries: An Experimental and Computational Hybrid Approach. Front Physiol 2021; 12:733009. [PMID: 34557112 PMCID: PMC8452922 DOI: 10.3389/fphys.2021.733009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerotic plaque rupture in coronary arteries, an important trigger of myocardial infarction, is shown to correlate with high levels of pressure-induced mechanical stresses in plaques. Finite element (FE) analyses are commonly used for plaque stress assessment. However, the required information of heterogenous material properties of atherosclerotic coronaries remains to be scarce. In this work, we characterized the component-wise mechanical properties of atherosclerotic human coronary arteries. To achieve this, we performed ex vivo inflation tests on post-mortem human coronary arteries and developed an inverse FE modeling (iFEM) pipeline, which combined high-frequency ultrasound deformation measurements, a high-field magnetic resonance-based artery composition characterization, and a machine learning-based Bayesian optimization (BO) with uniqueness assessment. By using the developed pipeline, 10 cross-sections from five atherosclerotic human coronary arteries were analyzed, and the Yeoh material model constants of the fibrous intima and arterial wall components were determined. This work outlines the developed pipeline and provides the knowledge of non-linear, multicomponent mechanical properties of atherosclerotic human coronary arteries.
Collapse
Affiliation(s)
- Su Guvenir Torun
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, Netherlands
| | - Hakki M Torun
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hendrik H G Hansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giulia Gandini
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, Netherlands.,Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Irene Berselli
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, Netherlands.,Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Veronica Codazzi
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, Netherlands.,Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Chris L de Korte
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | | | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Claudio Chiastra
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Ali C Akyildiz
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|