1
|
De Maio A, Huang Y, Lin FH, Stefanovic B, Stanisz GJ, O'Reilly MA. Evaluation of focused ultrasound modulation of the blood-brain barrier in gray and white matter. J Control Release 2025; 381:113631. [PMID: 40096865 DOI: 10.1016/j.jconrel.2025.113631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
RATIONALE Focused ultrasound (FUS) in combination with intravenous microbubbles is being studied clinically for modulation of the blood-brain barrier. Contrast-enhanced MRI can be used to visualize the enhanced permeability resulting from the treatment. However, contrast enhancement in the white matter (WM) are inconsistently observed compared to the gray matter (GM). Intrinsic tissue differences are believed to result in reduced treatment efficacy and insufficient drug delivery to the WM. In this study we evaluate the deposition of MRI contrast and clinically relevant antineoplastics in GM and WM tissues following single and repeated FUS and microbubble treatments. METHODS The brains of Fischer-344 rats (n = 24) and Yorkshire pigs (n = 6) underwent FUS (rats: 580 kHz; pigs: 220 kHz) treatments targeting the internal capsule and thalamus, repeated at 30-min intervals. Definity microbubbles (rats: 20 μL/kg bolus; pigs: 4 μL/kg/5-min infusion) were administered intravenously for each sonication with MRI contrast to measure gadolinium-mediated signal change. Feedback-controlled algorithms were used to monitor treatments and modulate the pressure based on emitted microbubble signals to ensure safe and effective exposures. The delivery of methotrexate (MTX; 454.4 Da) and bevacizumab (BVZ; 149 kDa) was evaluated via immunofluorescence microscopy in rats, and respectively quantified via liquid chromatography mass spectrometry and enzyme-linked immunosorbent assay in pigs. RESULTS Repeated FUS exposures successfully increased the vascular permeability of both gray and white matter tissues to MRI contrast and drugs of both small and large molecular sizes. In rats, single treatments showed statistically significant higher enhancements in the GM (23.5 ± 4.3 %; WM: 4.68 ± 3.75 %), however following a second sonication there were no between-tissue differences (GM: 38.0 ± 6.4 %; WM: 34.0 ± 8.7 %). In pigs, the smaller focus size relative to the brain enabled separate targeting of GM vs WM and the treatment controller used higher average power level in the WM to achieve the same cavitation dose. This resulted in no difference in gray and white matter permeability levels (to both contrast and pharmacological agents) after a single sonication. Repeated treatments sustained MRI enhancements for a longer time and enhanced drug deposition (MTX increased 6.5 and 8.3 folds after single and repeated treatment; BVZ increased 6.8 and 20.4 folds respectively). CONCLUSIONS Feedback-controlled algorithms and the possibility to individually target gray and white matter highlighted the impact of tissue composition on treatment outcomes. Repeated FUS-mediated modulation of the brain microvasculature achieved higher levels of permeabilization to contrast and pharmacological agents in both gray and white matter.
Collapse
Affiliation(s)
- Alessandro De Maio
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Yuexi Huang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Burstow R, Andrés D, Jiménez N, Camarena F, Thanou M, Pouliopoulos AN. Acoustic holography in biomedical applications. Phys Med Biol 2025; 70:06TR01. [PMID: 39978080 DOI: 10.1088/1361-6560/adb89a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Acoustic holography can be used to construct an arbitrary wavefront at a desired 2D plane or 3D volume by beam shaping an emitted field and is a relatively new technique in the field of biomedical applications. Acoustic holography was first theorized in 1985 following Gabor's work in creating optical holograms in the 1940s. Recent developments in 3D printing have led to an easier and faster way to manufacture monolithic acoustic holographic lenses that can be attached to single-element transducers. As ultrasound passes through the lens material, a phase shift is applied to the waves, causing an interference pattern at the 2D image plane or 3D volume, which forms the desired pressure field. This technology has many applications already in use and has become of increasing interest for the biomedical community, particularly for treating regions that are notoriously difficult to operate on, such as the brain. Acoustic holograms could provide a non-invasive, precise, and patient specific way to deliver drugs, induce hyperthermia, or create tissue cell patterns. However, there are still limitations in acoustic holography, such as the difficulties in creating 3D holograms and the passivity of monolithic lenses. This review aims to outline the biomedical applications of acoustic holograms reported to date and discuss their current limitations and the future work that is needed for them to reach their full potential in the biomedical community.
Collapse
Affiliation(s)
- Rachel Burstow
- Department of Surgical & Interventional Engineering, School of Biomedical Engineering Imaging Sciences, King's College London, London, United Kingdom
| | - Diana Andrés
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Maya Thanou
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Antonios N Pouliopoulos
- Department of Surgical & Interventional Engineering, School of Biomedical Engineering Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
3
|
ter Linden E, Abels ER, van Solinge TS, Neefjes J, Broekman MLD. Overcoming Barriers in Glioblastoma-Advances in Drug Delivery Strategies. Cells 2024; 13:998. [PMID: 38920629 PMCID: PMC11201826 DOI: 10.3390/cells13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.
Collapse
Affiliation(s)
- Esther ter Linden
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Erik R. Abels
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Thomas S. van Solinge
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Marike L. D. Broekman
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| |
Collapse
|
4
|
Lee PY, Wei HJ, Pouliopoulos AN, Forsyth BT, Yang Y, Zhang C, Laine AF, Konofagou EE, Wu CC, Guo J. Deep Learning Enables Reduced Gadolinium Dose for Contrast-Enhanced Blood-Brain Barrier Opening. ARXIV 2023:arXiv:2301.07248v1. [PMID: 36713234 PMCID: PMC9882566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Focused ultrasound (FUS) can be used to open the blood-brain barrier (BBB), and MRI with contrast agents can detect that opening. However, repeated use of gadolinium-based contrast agents (GBCAs) presents safety concerns to patients. This study is the first to propose the idea of modeling a volume transfer constant (Ktrans) through deep learning to reduce the dosage of contrast agents. The goal of the study is not only to reconstruct artificial intelligence (AI) derived Ktrans images but to also enhance the intensity with low dosage contrast agent T1 weighted MRI scans. We successfully validated this idea through a previous state-of-the-art temporal network algorithm, which focused on extracting time domain features at the voxel level. Then we used a Spatiotemporal Network (ST-Net), composed of a spatiotemporal convolutional neural network (CNN)-based deep learning architecture with the addition of a three-dimensional CNN encoder, to improve the model performance. We tested the ST-Net model on ten datasets of FUS-induced BBB-openings aquired from different sides of the mouse brain. ST-Net successfully detected and enhanced BBB-opening signals without sacrificing spatial domain information. ST-Net was shown to be a promising method of reducing the need of contrast agents for modeling BBB-opening K-trans maps from time-series Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans.
Collapse
Affiliation(s)
- Pin-Yu Lee
- Department of Biomedical Engineering, The Fu Foundation of Engineering and Applied Science, Columbia University, New York, NY 10027 USA
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Antonios N Pouliopoulos
- Department of Biomedical Engineering, Columbia University. He is now with the School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Britney T Forsyth
- Department of Biomedical Engineering, The Fu Foundation of Engineering and Applied Science, Columbia University, New York, NY 10027 USA
| | - Yanting Yang
- Department of Biomedical Engineering, The Fu Foundation of Engineering and Applied Science, Columbia University, New York, NY 10027 USA
| | - Chenghao Zhang
- Department of Biomedical Engineering, The Fu Foundation of Engineering and Applied Science, Columbia University, New York, NY 10027 USA
| | - Andrew F Laine
- Departments of Biomedical Engineering and Radiology (Physics), Columbia University, New York, NY 10027 USA
| | - Elisa E Konofagou
- Departments of Biomedical Engineering and Radiology (Physics), Columbia University, New York, NY 10027 USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Jia Guo
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
5
|
Mungur R, Zheng J, Wang B, Chen X, Zhan R, Tong Y. Low-Intensity Focused Ultrasound Technique in Glioblastoma Multiforme Treatment. Front Oncol 2022; 12:903059. [PMID: 35677164 PMCID: PMC9169875 DOI: 10.3389/fonc.2022.903059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is one of the central nervous system most aggressive and lethal cancers with poor overall survival rate. Systemic treatment of glioblastoma remains the most challenging aspect due to the low permeability of the blood-brain barrier (BBB) and blood-tumor barrier (BTB), limiting therapeutics extravasation mainly in the core tumor as well as in its surrounding invading areas. It is now possible to overcome these barriers by using low-intensity focused ultrasound (LIFU) together with intravenously administered oscillating microbubbles (MBs). LIFU is a non-invasive technique using converging ultrasound waves which can alter the permeability of BBB/BTB to drug delivery in a specific brain/tumor region. This emerging technique has proven to be both safe and repeatable without causing injury to the brain parenchyma including neurons and other structures. Furthermore, LIFU is also approved by the FDA to treat essential tremors and Parkinson's disease. It is currently under clinical trial in patients suffering from glioblastoma as a drug delivery strategy and liquid biopsy for glioblastoma biomarkers. The use of LIFU+MBs is a step-up in the world of drug delivery, where onco-therapeutics of different molecular sizes and weights can be delivered directly into the brain/tumor parenchyma. Initially, several potent drugs targeting glioblastoma were limited to cross the BBB/BTB; however, using LIFU+MBs, diverse therapeutics showed significantly higher uptake, improved tumor control, and overall survival among different species. Here, we highlight the therapeutic approach of LIFU+MBs mediated drug-delivery in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Rajneesh Mungur
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiesheng Zheng
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ben Wang
- Key Laboratory of Cancer Prevention and Intervention, Key Laboratory of Molecular Biology in Medical Sciences, National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Tong
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Roberts JW, Powlovich L, Sheybani N, LeBlang S. Focused ultrasound for the treatment of glioblastoma. J Neurooncol 2022; 157:237-247. [PMID: 35267132 PMCID: PMC9021052 DOI: 10.1007/s11060-022-03974-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Six years ago, in 2015, the Focused Ultrasound Foundation sponsored a workshop to discuss, and subsequently transition the landscape, of focused ultrasound as a new therapy for treating glioblastoma. METHODS This year, in 2021, a second workshop was held to review progress made in the field. Discussion topics included blood-brain barrier opening, thermal and nonthermal tumor ablation, immunotherapy, sonodynamic therapy, and desired focused ultrasound device improvements. RESULTS The outcome of the 2021 workshop was the creation of a new roadmap to address knowledge gaps and reduce the time it takes for focused ultrasound to become part of the treatment armamentarium and reach clinical adoption for the treatment of patients with glioblastoma. Priority projects identified in the roadmap include determining a well-defined algorithm to confirm and quantify drug delivery following blood-brain barrier opening, identifying a focused ultrasound-specific microbubble, exploring the role of focused ultrasound for liquid biopsy in glioblastoma, and making device modifications that better support clinical needs. CONCLUSION This article reviews the key preclinical and clinical updates from the workshop, outlines next steps to research, and provides relevant references for focused ultrasound in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Jill W Roberts
- Focused Ultrasound Foundation, 1230 Cedars Court, Suite 206, Charlottesville, VA, 22903, USA.
| | - Lauren Powlovich
- Focused Ultrasound Foundation, 1230 Cedars Court, Suite 206, Charlottesville, VA, 22903, USA
| | - Natasha Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Suzanne LeBlang
- Focused Ultrasound Foundation, 1230 Cedars Court, Suite 206, Charlottesville, VA, 22903, USA
| |
Collapse
|
7
|
Clinical Study of Virtual Reality Augmented Technology Combined with Contrast-Enhanced Ultrasound in the Assessment of Thyroid Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:8042755. [PMID: 34394897 PMCID: PMC8363438 DOI: 10.1155/2021/8042755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/05/2022]
Abstract
Thyroid cancer has become the most common malignant tumor in the endocrine system, and its global incidence has been showing an upward trend. The diagnosis methods of thyroid cancer include ultrasound, fine-needle aspiration cytology, and neck CT, but the single ultrasound feature cannot simultaneously take into account the sensitivity and specificity of more than 85% when diagnosing thyroid cancer. The development of virtual technology can significantly improve the diagnosis of the thyroid gland. Based on this, this article proposes a clinical study of virtual reality technology combined with contrast-enhanced ultrasound in the assessment of thyroid cancer. This article uses a variety of methods, such as literature method, mathematical statistics, and experimental research, in-depth study of the theoretical cornerstones of virtual reality augmented technology, the application status of ultrasound contrast technology, and so on. And a fuzzy mean clustering algorithm was proposed to identify ultrasound images. Then, a clinical experiment of virtual reality augmented technology combined with contrast-enhanced ultrasound was designed to evaluate thyroid cancer, which included comparison of contrast-enhanced ultrasound signs, analysis of enhancement results, multifactor logistic analysis, and diagnostic efficacy analysis of ultrasound signs. The combined application of virtual reality augmented technology and contrast-enhanced ultrasound in the study of thyroid cancer has a sensitivity and specificity exceeding 85% as the diagnosis boundary changes, and the accuracy of the combined diagnosis is relatively high.
Collapse
|
8
|
Han M, Seo H, Choi H, Lee EH, Park J. Localized Modification of Water Molecule Transport After Focused Ultrasound-Induced Blood-Brain Barrier Disruption in Rat Brain. Front Neurosci 2021; 15:685977. [PMID: 34393708 PMCID: PMC8358078 DOI: 10.3389/fnins.2021.685977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Interstitial solutes can be removed by various overlapping clearance systems, including blood-brain barrier (BBB) transport and glymphatic clearance. Recently, focused ultrasound (FUS)-induced BBB disruption (BBBD) has been applied to visualize glymphatic transport. Despite evidence that FUS-BBBD might facilitate glymphatic transport, the nature of fluid movement within the sonication region is yet to be determined. In this study, we sought to determine whether FUS-BBBD may facilitate the local movement of water molecules. Two different FUS conditions (0.60-0.65 MPa and 0.75-0.80 MPa) were used to induce BBBD in the caudate-putamen and thalamus regions of healthy Sprague-Dawley rats. The water diffusion caused by FUS-BBBD was analyzed using the apparent diffusion coefficient (ADC), axial diffusivity, radial diffusivity (RD), and fractional anisotropy, obtained at 5 min, 24 and 48 h, as well as the water channel expression of aquaporin-4 (AQP-4) immunostaining at 48 h after FUS-induced BBBD. In addition, hematoxylin and eosin histopathology and Fluoro-Jade C (FJC) immunostaining were performed to analyze brain damage. The signal changes in ADC and RD in the sonication groups showed significant and transient reduction at 5 min, with subsequent increases at 24 and 48 h after FUS-induced BBBD. When we applied higher sonication conditions, the ADC and RD showed enhancement until 48 h, and became comparable to contralateral values at 72 h. AQP-4 expression was upregulated after FUS-induced BBBD in both sonication conditions at 48 h. The results of this study provide preliminary evidence on how mechanical forces from FUS alter water dynamics through diffusion tensor imaging (DTI) measures and AQP4 expression.
Collapse
Affiliation(s)
- Mun Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Hyeon Seo
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Hyojin Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| |
Collapse
|