1
|
Shi X, Zhao F, Feng L, Liu Y, Zhou X. Predicting the high intensity focused ultrasound focus in vivo using acoustic radiation force imaging. Med Phys 2025; 52:1728-1745. [PMID: 39660763 DOI: 10.1002/mp.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND One big challenge in the noninvasive high-intensity focused ultrasound (HIFU) surgery is that the location and shape of its focus is unpredictable at the preoperative stage due to the complexity of sound wave propagation. The Acoustic Radiation Force Impulse (ARFI) imaging is a potential solution to this problem, but artifacts resulting from shear wave propagation remain to be solved. PURPOSE In this study, we proposed avoiding those artefacts by applying the ARFI technique at a high imaging frame rate within a very short time before the shear waves start to propagate. METHODS Using single transmission with a convex imaging probe, two ultrafast imaging modalities (the diverging wave and the wide beam), were developed in the ARFI framework, and their reliabilities were validated on a nylon string phantom by the centroid tracking method borrowed from ultrasound localization microscopy (ULM). The proposed ARFI method was tested on a clinically equivalent HIFU system under different acoustic radiation intensities by in-vitro, ex-vivo and in-vivo experiments. In three experimental scenarios, we delivered short HIFU stimulation pulses at varying acoustic powers to induce tissue motion within the focal region. At each experimental site, both diverging wave and wide-beam imaging techniques were employed for motion estimation. Based on the focus prediction derived from the motion estimation, HIFU ablation treatment was performed. The treated samples were then incised to examine the damaged areas. Additionally, ultrasound B-mode images were acquired before and after the procedure and saved for analysis. RESULTS Quantitative analysis showed that the ARFI with wide beam imaging was able to predict the HIFU focus preoperatively, only with 1 to 3 mm of errors in focal central location, and less than 23% of percentage errors in focal area in most cases. However, the diverging wave imaging failed to predict the HIFU focus due to its low signal-to-noise ratio. CONCLUSIONS In conclusion, the inherent shear wave artefacts in ARFI for predicting the HIFU focus can be successfully avoided by carefully designing the imaging strategy and its working sequence. This ARFI technique was validated through a series of experiments on a clinically equivalent HIFU system, which demonstrated its capability in assisting surgical planning.
Collapse
Affiliation(s)
- Xinwang Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Fenglong Zhao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Lian Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yijing Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaowei Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- NMPA Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Wuhan, China
| |
Collapse
|
2
|
Yang K, Li Q, Xu J, Tang MX, Wang Z, Tsui PH, Zhou X. Frequency-Domain Robust PCA for Real-Time Monitoring of HIFU Treatment. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3001-3012. [PMID: 38578852 DOI: 10.1109/tmi.2024.3385408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
High intensity focused ultrasound (HIFU) is a thriving non-invasive technique for thermal ablation of tumors, but significant challenges remain in its real-time monitoring with medical imaging. Ultrasound imaging is one of the main imaging modalities for monitoring HIFU surgery in organs other than the brain, mainly due to its good temporal resolution. However, strong acoustic interference from HIFU irradiation severely obscures the B-mode images and compromises the monitoring. To address this problem, we proposed a frequency-domain robust principal component analysis (FRPCA) method to separate the HIFU interference from the contaminated B-mode images. Ex-vivo and in-vivo experiments were conducted to validate the proposed method based on a clinical HIFU therapy system combined with an ultrasound imaging platform. The performance of the FRPCA method was compared with the conventional notch filtering method. Results demonstrated that the FRPCA method can effectively remove HIFU interference from the B-mode images, which allowed HIFU-induced grayscale changes at the focal region to be recovered. Compared to notch-filtered images, the FRPCA-processed images showed an 8.9% improvement in terms of the structural similarity (SSIM) index to the uncontaminated B-mode images. These findings demonstrate that the FRPCA method presents an effective signal processing framework to remove the strong HIFU acoustic interference, obtains better dynamic visualization in monitoring the HIFU irradiation process, and offers great potential to improve the efficacy and safety of HIFU treatment and other focused ultrasound related applications.
Collapse
|
3
|
Zhou X, Li Y, Zhu Q, Luo J, Cao L, Quetai J, Li F, Tang MX, Wang Z. A Theragnostic HIFU Transducer and System for Inherently Registered Imaging and Therapy. IEEE Trans Biomed Eng 2023; 70:3413-3424. [PMID: 37339046 DOI: 10.1109/tbme.2023.3287870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE One big challenge with high intensity focused ultrasound (HIFU) is the difficulty in accurate prediction of focal location due to the complex wave propagation in heterogeneous medium even with imaging guidance. This study aims to overcome this by combining therapy and imaging guidance with one single HIFU transducer using the vibro-acoustography (VA) strategy. METHODS Based on the VA imaging method, a HIFU transducer consisting of 8 transmitting elements was proposed for therapy planning, treatment and evaluation. Inherent registration between the therapy and imaging created unique spatial consistence in HIFU transducer's focal region in the above three procedures. Performance of this imaging modality was first evaluated through in-vitro phantoms. In-vitro and ex-vivo experiments were then designed to demonstrate the proposed dual-mode system's ability in conducting accurate thermal ablation. RESULTS Point spread function of the HIFU-converted imaging system had a full wave half maximum of about 1.2 mm in both directions at a transmitting frequency of 1.2 MHz, which outperformed the conventional ultrasound imaging (3.15 MHz) in in-vitro situation. Image contrast was also tested on the in-vitro phantom. Various geometric patterns could be accurately 'burned out' on the testing objects by the proposed system both in vitro and ex vivo. CONCLUSION Implementation of imaging and therapy with one HIFU transducer in this manner is feasible and it has potential as a novel strategy for addressing the long-standing problem in the HIFU therapy, possibly pushing this non-invasive technique forward towards wider clinical applications.
Collapse
|
4
|
Feng L, Shi X, Zhou F, Chen Y, Zhou X. Technical note: Evaluation of the acoustic radiation force imaging for predicting HIFU focus with in vitro and ex vivo experiments. Med Phys 2023; 50:5449-5459. [PMID: 37345709 DOI: 10.1002/mp.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is currently used for the treatment of various diseases, but it still lacks a reliable technique in the preoperative stage to accurately place its "energy blade" onto diseased targets. Acoustic radiation force imaging (ARFI) was recently introduced to tackle this issue, but its applicability and limitations were not clear. PURPOSE The aim of this study was to evaluate the performance of ARFI method in prediction of HIFU focal location at the preoperative stage. METHODS A point spread function (PSF) localization method, which was borrowed from the ultrasound super resolution field, was used to validate the core autocorrelation-based motion estimation algorithm in the ARFI procedure. Accuracy of the ARFI method for estimating the HIFU focus were tested with in vitro and ex vivo experiments with a clinically equivalent HIFU system. Comparisons were made between the estimated focal locations and those of the damaged area after the testing objects were cut open. RESULTS Results showed that the PSF localization was able to serve as a validating method for motion detection only when the tissue displacement was large. With the ARFI method, location of the HIFU focus could be accurately predicted by a 2D motion map preoperatively, and the axial spatial errors were less than 0.5 mm. However, the derived 2D motion maps can only be valuable when the acoustic stimulation in ARFI were strong enough, which was probably due to the fact that the HIFU focal locations were at large depths and the ultrasound imaging signal had low signal to noise ratio. CONCLUSION The ARFI method was indeed an accurate technique for preoperatively predicting HIFU focus in vitro and ex vivo. If clinical applications were to be considered, particularly in deep tissues, efforts might need to be made to improve ability of the ultrasound motion estimation technique.
Collapse
Affiliation(s)
- Lian Feng
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinwang Shi
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Fang Zhou
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yanhua Chen
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaowei Zhou
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Shin EJ, Park S, Kang S, Kim J, Chang JH. Improving the quality of ultrasound images acquired using a therapeutic transducer. ULTRASONICS 2023; 134:107063. [PMID: 37300907 DOI: 10.1016/j.ultras.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
To enhance the effectiveness and safety of focused ultrasound (FUS) therapy, ultrasound image-based guidance and treatment monitoring are crucial. However, the use of FUS transducers for both therapy and imaging is impractical due to their low spatial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To address this issue, we propose a new method that significantly improve the quality of images obtained by a FUS transducer. The proposed method employs coded excitation to enhance SNR and Wiener deconvolution to solve the problem of low axial resolution resulting from the narrow spectral bandwidth of FUS transducers. Specifically, the method eliminates the impulse response of a FUS transducer from received ultrasound signals using Wiener deconvolution, and pulse compression is performed using a mismatched filter. Simulation and commercial phantom experiments confirmed that the proposed method significantly improves the quality of images acquired by the FUS transducer. The -6 dB axial resolution was improved 1.27 mm to 0.37 mm that was similar to the resolution achieved by the imaging transducer, i.e., 0.33 mm. SNR and CNR also increased from 16.5 dB and 0.69 to 29.1 dB and 3.03, respectively, that were also similar to those by the imaging transducer (27.8 dB and 3.16). Based on the results, we believe that the proposed method has great potential to enhance the clinical utility of FUS transducers in ultrasound image-guided therapy.
Collapse
Affiliation(s)
- Eui-Ji Shin
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Sunghun Park
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Sungwoo Kang
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea
| | - Jinwoo Kim
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea
| | - Jin Ho Chang
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea.
| |
Collapse
|
6
|
Yeats E, Lu N, Sukovich JR, Xu Z, Hall TL. Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1182-1193. [PMID: 36759271 PMCID: PMC10082475 DOI: 10.1016/j.ultrasmedbio.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Phase aberration from soft tissue limits the efficacy of histotripsy, a therapeutic ultrasound technique based on acoustic cavitation. Previous work has shown that the acoustic emissions from cavitation can serve as "point sources" for aberration correction (AC). This study compared the efficacy of soft tissue AC for histotripsy using acoustic cavitation emissions (ACE) from bubble cloud nucleation and collapse. METHODS A 750-kHz, receive-capable histotripsy array was pulsed to generate cavitation in ex vivo porcine liver through an intervening abdominal wall. Received ACE signals were used to determine the arrival time differences to the focus and compute corrective delays. Corrections from single pulses and from the median of multiple pulses were tested. DISCUSSION On average, ACE AC obtained 96% ± 3% of the pressure amplitude obtained by hydrophone-based correction (compared with 71% ± 5% without AC). Both nucleation- and collapse-based corrections obtained >96% of the hydrophone-corrected pressure when using medians of ≥10 pulses. When using single-pulse corrections, nucleation obtained a range of 49%-99% of the hydrophone-corrected pressure, while collapse obtained 95%-99%. CONCLUSION The results suggest that (i) ACE AC can recover nearly all pressure amplitude lost owing to soft tissue aberration and that (ii) the collapse signal permits robust AC using a small number of pulses.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Dai Q, Cao B, Zhao S, Zhang A. Synergetic Thermal Therapy for Cancer: State-of-the-Art and the Future. Bioengineering (Basel) 2022; 9:bioengineering9090474. [PMID: 36135020 PMCID: PMC9495761 DOI: 10.3390/bioengineering9090474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
As a safe and minimal-invasive modality, thermal therapy has become an effective treatment in cancer treatment. Other than killing the tumor cells or destroying the tumor entirely, the thermal modality results in profound molecular, cellular and biological effects on both the targeted tissue, surrounding environments, and even the whole body, which has triggered the combination of the thermal therapy with other traditional therapies as chemotherapy and radiation therapy or new therapies like immunotherapy, gene therapy, etc. The combined treatments have shown encouraging therapeutic effects both in research and clinic. In this review, we have summarized the outcomes of the existing synergistic therapies, the underlying mechanisms that lead to these improvements, and the latest research in the past five years. Limitations and future directions of synergistic thermal therapy are also discussed.
Collapse
|