1
|
Jafari Nivlouei S, Soltani M, Shirani E, Salimpour MR, Travasso R, Carvalho J. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach. Cell Prolif 2022; 55:e13187. [PMID: 35132721 PMCID: PMC8891571 DOI: 10.1111/cpr.13187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Computational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies. MATERIALS AND METHODS A three-dimensional multiscale cell-based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes. The model generates a realistic representation of the processes involved from an implementation of the signaling transduction network. RESULTS Considering a benign tumor development, results are in good agreement with the experimental ones, which identify three different phases in tumor growth. Simulating tumor vascular growth, results predict a highly vascularized tumor morphology in a lobulated form, a consequence of cells' motile behavior. A novel systematic study of chemotherapy intervention, in combination with targeted therapy, is presented to address the capability of the model to evaluate typical clinical protocols. The model also performs a dose comparison study in order to optimize treatment efficacy and surveys the effect of chemotherapy initiation delays and different regimens. CONCLUSIONS Results not only provide detailed insights into tumor progression, but also support suggestions for clinical implementation. This is a major step toward the goal of predicting the effects of not only traditional chemotherapy but also tumor-targeted therapies.
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.,Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| | | | - Rui Travasso
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - João Carvalho
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Gondal MN, Chaudhary SU. Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Front Oncol 2021; 11:712505. [PMID: 34900668 PMCID: PMC8652070 DOI: 10.3389/fonc.2021.712505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Rapid advancements in high-throughput omics technologies and experimental protocols have led to the generation of vast amounts of scale-specific biomolecular data on cancer that now populates several online databases and resources. Cancer systems biology models built using this data have the potential to provide specific insights into complex multifactorial aberrations underpinning tumor initiation, development, and metastasis. Furthermore, the annotation of these single- and multi-scale models with patient data can additionally assist in designing personalized therapeutic interventions as well as aid in clinical decision-making. Here, we have systematically reviewed the emergence and evolution of (i) repositories with scale-specific and multi-scale biomolecular cancer data, (ii) systems biology models developed using this data, (iii) associated simulation software for the development of personalized cancer therapeutics, and (iv) translational attempts to pipeline multi-scale panomics data for data-driven in silico clinical oncology. The review concludes that the absence of a generic, zero-code, panomics-based multi-scale modeling pipeline and associated software framework, impedes the development and seamless deployment of personalized in silico multi-scale models in clinical settings.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Jafari Nivlouei S, Soltani M, Carvalho J, Travasso R, Salimpour MR, Shirani E. Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy. PLoS Comput Biol 2021; 17:e1009081. [PMID: 34161319 PMCID: PMC8259971 DOI: 10.1371/journal.pcbi.1009081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/06/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics of tumor growth and associated events cover multiple time and spatial scales, generally including extracellular, cellular and intracellular modifications. The main goal of this study is to model the biological and physical behavior of tumor evolution in presence of normal healthy tissue, considering a variety of events involved in the process. These include hyper and hypoactivation of signaling pathways during tumor growth, vessels' growth, intratumoral vascularization and competition of cancer cells with healthy host tissue. The work addresses two distinctive phases in tumor development-the avascular and vascular phases-and in each stage two cases are considered-with and without normal healthy cells. The tumor growth rate increases considerably as closed vessel loops (anastomoses) form around the tumor cells resulting from tumor induced vascularization. When taking into account the host tissue around the tumor, the results show that competition between normal cells and cancer cells leads to the formation of a hypoxic tumor core within a relatively short period of time. Moreover, a dense intratumoral vascular network is formed throughout the entire lesion as a sign of a high malignancy grade, which is consistent with reported experimental data for several types of solid carcinomas. In comparison with other mathematical models of tumor development, in this work we introduce a multiscale simulation that models the cellular interactions and cell behavior as a consequence of the activation of oncogenes and deactivation of gene signaling pathways within each cell. Simulating a therapy that blocks relevant signaling pathways results in the prevention of further tumor growth and leads to an expressive decrease in its size (82% in the simulation).
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | | | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| |
Collapse
|
4
|
Bloch N, Harel D. The tumor as an organ: comprehensive spatial and temporal modeling of the tumor and its microenvironment. BMC Bioinformatics 2016; 17:317. [PMID: 27553370 PMCID: PMC4995621 DOI: 10.1186/s12859-016-1168-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 08/11/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Research related to cancer is vast, and continues in earnest in many directions. Due to the complexity of cancer, a better understanding of tumor growth dynamics can be gleaned from a dynamic computational model. We present a comprehensive, fully executable, spatial and temporal 3D computational model of the development of a cancerous tumor together with its environment. RESULTS The model was created using Statecharts, which were then connected to an interactive animation front-end that we developed especially for this work, making it possible to visualize on the fly the on-going events of the system's execution, as well as the effect of various input parameters. We were thus able to gain a better understanding of, e.g., how different amounts or thresholds of oxygen and VEGF (vascular endothelial growth factor) affect the progression of the tumor. We found that the tumor has a critical turning point, where it either dies or recovers. If minimum conditions are met at that time, it eventually develops into a full, active, growing tumor, regardless of the actual amount; otherwise it dies. CONCLUSIONS This brings us to the conclusion that the tumor is in fact a very robust system: changing initial values of VEGF and oxygen can increase the time it takes to become fully developed, but will not necessarily completely eliminate it.
Collapse
Affiliation(s)
- Naamah Bloch
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 234 Herzl st, 7610001, Rehovot, Israel.
| | - David Harel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 234 Herzl st, 7610001, Rehovot, Israel
| |
Collapse
|
5
|
Bloch N, Weiss G, Szekely S, Harel D. An Interactive Tool for Animating Biology, and Its Use in Spatial and Temporal Modeling of a Cancerous Tumor and Its Microenvironment. PLoS One 2015; 10:e0133484. [PMID: 26191814 PMCID: PMC4508114 DOI: 10.1371/journal.pone.0133484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/27/2015] [Indexed: 01/15/2023] Open
Abstract
The ability to visualize the ongoing events of a computational model of biology is critical, both in order to see the dynamics of the biological system in action and to enable interaction with the model from which one can observe the resulting behavior. To this end, we have built a new interactive animation tool, SimuLife, for visualizing reactive models of cellular biology. SimuLife is web-based, and is freely accessible at http://simulife.weizmann.ac.il/. We have used SimuLife to animate a model that describes the development of a cancerous tumor, based on the individual components of the system and its environment. This has helped in understanding the dynamics of the tumor and its surrounding blood vessels, and in verifying the behavior, fine-tuning the model accordingly, and learning in which way different factors affect the tumor.
Collapse
Affiliation(s)
- Naamah Bloch
- Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| | - Guy Weiss
- Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Szekely
- Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - David Harel
- Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Bazmara H, Soltani M, Sefidgar M, Bazargan M, Mousavi Naeenian M, Rahmim A. The Vital Role of Blood Flow-Induced Proliferation and Migration in Capillary Network Formation in a Multiscale Model of Angiogenesis. PLoS One 2015; 10:e0128878. [PMID: 26047145 PMCID: PMC4457864 DOI: 10.1371/journal.pone.0128878] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/01/2015] [Indexed: 01/16/2023] Open
Abstract
Sprouting angiogenesis and capillary network formation are tissue scale phenomena. There are also sub-scale phenomena involved in angiogenesis including at the cellular and intracellular (molecular) scales. In this work, a multiscale model of angiogenesis spanning intracellular, cellular, and tissue scales is developed in detail. The key events that are considered at the tissue scale are formation of closed flow path (that is called loop in this article) and blood flow initiation in the loop. At the cellular scale, growth, migration, and anastomosis of endothelial cells (ECs) are important. At the intracellular scale, cell phenotype determination as well as alteration due to blood flow is included, having pivotal roles in the model. The main feature of the model is to obtain the physical behavior of a closed loop at the tissue scale, relying on the events at the cellular and intracellular scales, and not by imposing physical behavior upon it. Results show that, when blood flow is considered in the loop, the anastomosed sprouts stabilize and elongate. By contrast, when the loop is modeled without consideration of blood flow, the loop collapses. The results obtained in this work show that proper determination of EC phenotype is the key for its survival.
Collapse
Affiliation(s)
- Hossein Bazmara
- Department of Mechanical Engineering, K. N. T. University of Technology, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. T. University of Technology, Tehran, Iran
- Division of Nuclear Medicine, Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Mostafa Sefidgar
- Department of Mechanical Engineering, K. N. T. University of Technology, Tehran, Iran
| | - Majid Bazargan
- Department of Mechanical Engineering, K. N. T. University of Technology, Tehran, Iran
| | | | - Arman Rahmim
- Division of Nuclear Medicine, Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|