1
|
Corrales-Hernández MG, Villarroel-Hagemann SK, Mendoza-Rodelo IE, Palacios-Sánchez L, Gaviria-Carrillo M, Buitrago-Ricaurte N, Espinosa-Lugo S, Calderon-Ospina CA, Rodríguez-Quintana JH. Development of Antiepileptic Drugs throughout History: From Serendipity to Artificial Intelligence. Biomedicines 2023; 11:1632. [PMID: 37371727 DOI: 10.3390/biomedicines11061632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
This article provides a comprehensive narrative review of the history of antiepileptic drugs (AEDs) and their development over time. Firstly, it explores the significant role of serendipity in the discovery of essential AEDs that continue to be used today, such as phenobarbital and valproic acid. Subsequently, it delves into the historical progression of crucial preclinical models employed in the development of novel AEDs, including the maximal electroshock stimulation test, pentylenetetrazol-induced test, kindling models, and other animal models. Moving forward, a concise overview of the clinical advancement of major AEDs is provided, highlighting the initial milestones and the subsequent refinement of this process in recent decades, in line with the emergence of evidence-based medicine and the implementation of increasingly rigorous controlled clinical trials. Lastly, the article explores the contributions of artificial intelligence, while also offering recommendations and discussing future perspectives for the development of new AEDs.
Collapse
Affiliation(s)
- María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sebastián Kurt Villarroel-Hagemann
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | | | - Leonardo Palacios-Sánchez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mariana Gaviria-Carrillo
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | | | - Santiago Espinosa-Lugo
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos-Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Research Group in Applied Biomedical Sciences (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Jesús Hernán Rodríguez-Quintana
- Fundacion CardioInfantil-Instituto de Cardiologia, Calle 163a # 13B-60, Bogotá 111156, Colombia
- Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411, Colombia
| |
Collapse
|
2
|
He H, Duo H, Hao Y, Zhang X, Zhou X, Zeng Y, Li Y, Li B. Computational drug repurposing by exploiting large-scale gene expression data: Strategy, methods and applications. Comput Biol Med 2023; 155:106671. [PMID: 36805225 DOI: 10.1016/j.compbiomed.2023.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
De novo drug development is an extremely complex, time-consuming and costly task. Urgent needs for therapies of various diseases have greatly accelerated searches for more effective drug development methods. Luckily, drug repurposing provides a new and effective perspective on disease treatment. Rapidly increased large-scale transcriptome data paints a detailed prospect of gene expression during disease onset and thus has received wide attention in the field of computational drug repurposing. However, how to efficiently mine transcriptome data and identify new indications for old drugs remains a critical challenge. This review discussed the irreplaceable role of transcriptome data in computational drug repurposing and summarized some representative databases, tools and strategies. More importantly, it proposed a practical guideline through establishing the correspondence between three gene expression data types and five strategies, which would facilitate researchers to adopt appropriate strategies to deeply mine large-scale transcriptome data and discover more effective therapies.
Collapse
Affiliation(s)
- Hao He
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, PR China
| | - Hongrui Duo
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Xiaoxi Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Xinyi Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Yujie Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Yinghong Li
- The Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China.
| |
Collapse
|
3
|
Yang X, Yang G, Chu J. The Neural Metric Factorization for Computational Drug Repositioning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:731-741. [PMID: 35061591 DOI: 10.1109/tcbb.2022.3144429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Computational drug repositioning aims to discover new therapeutic diseases for marketed drugs and has the advantages of low cost, short development cycle, and high controllability compared to traditional drug development. The matrix factorization model has become the cornerstone technique for computational drug repositioning due to its ease of implementation and excellent scalability. However, the matrix factorization model uses the inner product operation to represent the association between drugs and diseases, which is lacking in expressive ability. Moreover, the degree of similarity of drugs or diseases could not be implied on their respective latent factor vectors, which is not satisfy the common sense of drug discovery. Therefore, a neural metric factorization model for computational drug repositioning (NMFDR) is proposed in this work. We novelly consider the latent factor vector of drugs and diseases as a point in the high-dimensional coordinate system and propose a generalized euclidean distance to represent the association between drugs and diseases to compensate for the shortcomings of the inner product operation. Furthermore, by embedding multiple drug (disease) metrics information into the encoding space of the latent factor vector, the information about the similarity between drugs (diseases) can be reflected in the distance between latent factor vectors. Finally, we conduct wide analysis experiments on three real datasets to demonstrate the effectiveness of the above improvement points and the superiority of the NMFDR model.
Collapse
|
4
|
An explainable framework for drug repositioning from disease information network. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhang Y, Lei X, Pan Y, Wu FX. Drug Repositioning with GraphSAGE and Clustering Constraints Based on Drug and Disease Networks. Front Pharmacol 2022; 13:872785. [PMID: 35620297 PMCID: PMC9127467 DOI: 10.3389/fphar.2022.872785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
The understanding of therapeutic properties is important in drug repositioning and drug discovery. However, chemical or clinical trials are expensive and inefficient to characterize the therapeutic properties of drugs. Recently, artificial intelligence (AI)-assisted algorithms have received extensive attention for discovering the potential therapeutic properties of drugs and speeding up drug development. In this study, we propose a new method based on GraphSAGE and clustering constraints (DRGCC) to investigate the potential therapeutic properties of drugs for drug repositioning. First, the drug structure features and disease symptom features are extracted. Second, the drug–drug interaction network and disease similarity network are constructed according to the drug–gene and disease–gene relationships. Matrix factorization is adopted to extract the clustering features of networks. Then, all the features are fed to the GraphSAGE to predict new associations between existing drugs and diseases. Benchmark comparisons on two different datasets show that our method has reliable predictive performance and outperforms other six competing. We have also conducted case studies on existing drugs and diseases and aimed to predict drugs that may be effective for the novel coronavirus disease 2019 (COVID-19). Among the predicted anti-COVID-19 drug candidates, some drugs are being clinically studied by pharmacologists, and their binding sites to COVID-19-related protein receptors have been found via the molecular docking technology.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Wang YY, Kang H, Xu T, Hao L, Bao Y, Jia P. CeDR Atlas: a knowledgebase of cellular drug response. Nucleic Acids Res 2021; 50:D1164-D1171. [PMID: 34634794 PMCID: PMC8728137 DOI: 10.1093/nar/gkab897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Drug response to many diseases varies dramatically due to the complex genomics and functional features and contexts. Cellular diversity of human tissues, especially tumors, is one of the major contributing factors to the different drug response in different samples. With the accumulation of single-cell RNA sequencing (scRNA-seq) data, it is now possible to study the drug response to different treatments at the single cell resolution. Here, we present CeDR Atlas (available at https://ngdc.cncb.ac.cn/cedr), a knowledgebase reporting computational inference of cellular drug response for hundreds of cell types from various tissues. We took advantage of the high-throughput profiling of drug-induced gene expression available through the Connectivity Map resource (CMap) as well as hundreds of scRNA-seq data covering cells from a wide variety of organs/tissues, diseases, and conditions. Currently, CeDR maintains the results for more than 582 single cell data objects for human, mouse and cell lines, including about 140 phenotypes and 1250 tissue-cell combination types. All the results can be explored and searched by keywords for drugs, cell types, tissues, diseases, and signature genes. Overall, CeDR fine maps drug response at cellular resolution and sheds lights on the design of combinatorial treatments, drug resistance and even drug side effects.
Collapse
Affiliation(s)
- Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Xu
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Hao
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiming Bao
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Xie J, Zhao C, Sun J, Li J, Yang F, Wang J, Nie Q. Prediction of Essential Genes in Comparison States Using Machine Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1784-1792. [PMID: 32991286 DOI: 10.1109/tcbb.2020.3027392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying essential genes in comparison states (EGS) is vital to understanding cell differentiation, performing drug discovery, and identifying disease causes. Here, we present a machine learning method termed Prediction of Essential Genes in Comparison States (PreEGS). To capture the alteration of the network in comparison states, PreEGS extracts topological and gene expression features of each gene in a five-dimensional vector. PreEGS also recruits a positive sample expansion method to address the problem of unbalanced positive and negative samples, which is often encountered in practical applications. Different classifiers are applied to the simulated datasets, and the PreEGS based on the random forests model (PreEGSRF) was chosen for optimal performance. PreEGSRF was then compared with six other methods, including three machine learning methods, to predict EGS in a specific state. On real datasets with four gene regulatory networks, PreEGSRF predicted five essential genes related to leukemia and five enriched KEGG pathways. Four of the predicted essential genes and all predicted pathways were consistent with previous studies and highly correlated with leukemia. With high prediction accuracy and generalization ability, PreEGSRF is broadly applicable for the discovery of disease-causing genes, driver genes for cell fate decisions, and complex biomarkers of biological systems.
Collapse
|
8
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
9
|
Sadeghi SS, Keyvanpour MR. An Analytical Review of Computational Drug Repurposing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:472-488. [PMID: 31403439 DOI: 10.1109/tcbb.2019.2933825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug repurposing is a vital function in pharmaceutical fields and has gained popularity in recent years in both the pharmaceutical industry and research community. It refers to the process of discovering new uses and indications for existing or failed drugs. It is cost-effective and reliable in contrast to experimental drug discovery, which is a costly, time-consuming, and risky process and limited to a relatively small number of targets. Accordingly, a plethora of computational methodologies have been propounded to repurpose drugs on a large scale by utilizing available high throughput data. The available literature, however, lacks a contemporary and comprehensive analysis of the current computational drug repurposing methodologies. In this paper, we presented a systematic analysis of computational drug repurposing which consists of three main sections: Initially, we categorize the computational drug repurposing methods based on their technical approach and artificial intelligence perspective and discuss the strengths and weaknesses of various methods. Secondly, some general criteria are recommended to analyze our proposed categorization. In the third and final section, a qualitative comparison is made between each approach which is a guide to understanding their preference to one another. Further, this systematic analysis can help in the efficient selection and improvement of drug repurposing techniques based on the nature of computational methods implemented on biological resources.
Collapse
|
10
|
Wu QW, Xia JF, Ni JC, Zheng CH. GAERF: predicting lncRNA-disease associations by graph auto-encoder and random forest. Brief Bioinform 2021; 22:6067881. [PMID: 33415333 DOI: 10.1093/bib/bbaa391] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Predicting disease-related long non-coding RNAs (lncRNAs) is beneficial to finding of new biomarkers for prevention, diagnosis and treatment of complex human diseases. In this paper, we proposed a machine learning techniques-based classification approach to identify disease-related lncRNAs by graph auto-encoder (GAE) and random forest (RF) (GAERF). First, we combined the relationship of lncRNA, miRNA and disease into a heterogeneous network. Then, low-dimensional representation vectors of nodes were learned from the network by GAE, which reduce the dimension and heterogeneity of biological data. Taking these feature vectors as input, we trained a RF classifier to predict new lncRNA-disease associations (LDAs). Related experiment results show that the proposed method for the representation of lncRNA-disease characterizes them accurately. GAERF achieves superior performance owing to the ensemble learning method, outperforming other methods significantly. Moreover, case studies further demonstrated that GAERF is an effective method to predict LDAs.
Collapse
Affiliation(s)
- Qing-Wen Wu
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| | - Jun-Feng Xia
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jian-Cheng Ni
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Chun-Hou Zheng
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, College of Computer Science and Technology, Anhui University, Hefei, China
| |
Collapse
|
11
|
Su Y, Su X, Wang Q, Zhang L. A multi-objective optimization method for identification of module biomarkers for disease diagnosis. Methods 2020; 192:35-45. [PMID: 32949693 DOI: 10.1016/j.ymeth.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Biomarker identification aims at finding a set of biological indicators that best discriminate biological samples of different phenotypes. In this paper, we take the module containing the significant disease-related genes and their interactions from biological networks as a module biomarker, and propose an evolutionary multi-objective optimization method to identify module biomarkers for disease diagnosis. To be specific, we take the classification accuracy on control and disease samples, the association with disease and the intra-link density in the module as the optimization objectives. To achieve the best performance, a novel population initiation strategy is tailored to generate dense-connected initial solutions, and a specific population update strategy is employed to direct the evolution towards the global optimums with abundant diversity. Experimental results show that our method outperforms the previous state-of-the-art disease diagnosis methods. Meantime, the detected biomarker module can reflect the basic and significant biological functions and has a great correlation with a disease phenotype.
Collapse
Affiliation(s)
- Yansen Su
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei 230601, China
| | - Xiaochun Su
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei 230601, China
| | - Qijun Wang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei 230601, China.
| | - Lejun Zhang
- Yangzhou Univeristy, Yangzhou 225009, China.
| |
Collapse
|
12
|
Identifying and ranking potential cancer drivers using representation learning on attributed network. Methods 2020; 192:13-24. [PMID: 32758683 DOI: 10.1016/j.ymeth.2020.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer can arise as a consequence of the accumulation of genomic alterations. Only a small part of driver mutations contributes to cancer development and progression. Hence, the identification of genes and alterations that serve as drivers for cancer development plays a critical role in drug design, cancer diagnoses and treatment. In this study, we propose a novel method to identify potential cancer drivers by using a Representation Learning method on Attributed Graphs (called RLAG). It is a first attempt to use both network structure and node attributes to learn feature representation for the genes in the network. Then it leverages these feature vectors to divide the genes into several subgroups. Finally, potential cancer driver genes are prioritized according to ranking scores that measure both genes' properties and their importance in the subgroups. We apply our method to predict driver genes for lung cancer, breast cancer and prostate cancer. The results show that our method outperforms the other three state-of-the-art methods in terms of Precision, Recall and F1-score values.
Collapse
|
13
|
Nicholson DN, Greene CS. Constructing knowledge graphs and their biomedical applications. Comput Struct Biotechnol J 2020; 18:1414-1428. [PMID: 32637040 PMCID: PMC7327409 DOI: 10.1016/j.csbj.2020.05.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/31/2022] Open
Abstract
Knowledge graphs can support many biomedical applications. These graphs represent biomedical concepts and relationships in the form of nodes and edges. In this review, we discuss how these graphs are constructed and applied with a particular focus on how machine learning approaches are changing these processes. Biomedical knowledge graphs have often been constructed by integrating databases that were populated by experts via manual curation, but we are now seeing a more robust use of automated systems. A number of techniques are used to represent knowledge graphs, but often machine learning methods are used to construct a low-dimensional representation that can support many different applications. This representation is designed to preserve a knowledge graph's local and/or global structure. Additional machine learning methods can be applied to this representation to make predictions within genomic, pharmaceutical, and clinical domains. We frame our discussion first around knowledge graph construction and then around unifying representational learning techniques and unifying applications. Advances in machine learning for biomedicine are creating new opportunities across many domains, and we note potential avenues for future work with knowledge graphs that appear particularly promising.
Collapse
Affiliation(s)
- David N. Nicholson
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, United States
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, United States
| |
Collapse
|