1
|
Selote R, Makhijani R. A knowledge graph approach to drug repurposing for Alzheimer's, Parkinson's and Glioma using drug-disease-gene associations. Comput Biol Chem 2025; 115:108302. [PMID: 39693851 DOI: 10.1016/j.compbiolchem.2024.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Drug Repurposing gives us facility to find the new uses of previously developed drugs rather than developing new drugs from start. Particularly during pandemic, drug repurposing caught much attention to provide new applications of the previously approved drugs. In our research, we provide a novel method for drug repurposing based on feature learning process from drug-disease-gene network. In our research, we aimed at finding drug candidates which can be repurposed under neurodegenerative diseases and glioma. We collected association data between drugs, diseases and genes from public resources and primarily examined the data related to Alzheimer's, Parkinson's and Glioma diseases. We created a Knowledge Graph using neo4j by integrating all these datasets and applied scalable feature learning algorithm known as node2vec to create node embeddings. These embeddings were later used to predict the unknown associations between disease and their candidate drugs by finding cosine similarity between disease and drug nodes embedding. We obtained a definitive set of candidate drugs for repurposing. These results were validated from the literature and CodReS online tool to rank the candidate drugs. Additionally, we verified the status of candidate drugs from pharmaceutical knowledge databases to confirm their significance.
Collapse
Affiliation(s)
- Ruchira Selote
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Nagpur, India.
| | - Richa Makhijani
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Nagpur, India.
| |
Collapse
|
2
|
Meng W, Xu X, Xiao Z, Gao L, Yu L. Cancer Drug Sensitivity Prediction Based on Deep Transfer Learning. Int J Mol Sci 2025; 26:2468. [PMID: 40141112 PMCID: PMC11942577 DOI: 10.3390/ijms26062468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, many approved drugs have been discovered using phenotypic screening, which elaborates the exact mechanisms of action or molecular targets of drugs. Drug susceptibility prediction is an important type of phenotypic screening. Large-scale pharmacogenomics studies have provided us with large amounts of drug sensitivity data. By analyzing these data using computational methods, we can effectively build models to predict drug susceptibility. However, due to the differences in data distribution among databases, researchers cannot directly utilize data from multiple sources. In this study, we propose a deep transfer learning model. We integrate the genomic characterization of cancer cell lines with chemical information on compounds, combined with the Encyclopedia of Cancer Cell Lines (CCLE) and the Genomics of Cancer Drug Sensitivity (GDSC) datasets, through a domain-adapted approach and predict the half-maximal inhibitory concentrations (IC50 values). Afterward, the validity of the prediction results of our model is verified. This study effectively addresses the challenge of cross-database distribution discrepancies in drug sensitivity prediction by integrating multi-source heterogeneous data and constructing a deep transfer learning model. This model serves as a reliable computational tool for precision drug development. Its widespread application can facilitate the optimization of therapeutic strategies in personalized medicine while also providing technical support for high-throughput drug screening and the discovery of new drug targets.
Collapse
Affiliation(s)
- Weijun Meng
- School of Computer Science and Technology, Xi’an University of Posts & Telecommunications, Xi’an 710071, China;
| | - Xinyu Xu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (X.X.); (Z.X.); (L.G.)
| | - Zhichao Xiao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (X.X.); (Z.X.); (L.G.)
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (X.X.); (Z.X.); (L.G.)
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (X.X.); (Z.X.); (L.G.)
| |
Collapse
|
3
|
Luo H, Yang H, Zhang G, Wang J, Luo J, Yan C. KGRDR: a deep learning model based on knowledge graph and graph regularized integration for drug repositioning. Front Pharmacol 2025; 16:1525029. [PMID: 40008124 PMCID: PMC11850324 DOI: 10.3389/fphar.2025.1525029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Computational drug repositioning, serving as an effective alternative to traditional drug discovery plays a key role in optimizing drug development. This approach can accelerate the development of new therapeutic options while reducing costs and mitigating risks. In this study, we propose a novel deep learning-based framework KGRDR containing multi-similarity integration and knowledge graph learning to predict potential drug-disease interactions. Specifically, a graph regularized approach is applied to integrate multiple drug and disease similarity information, which can effectively eliminate noise data and obtain integrated similarity features of drugs and diseases. Then, topological feature representations of drugs and diseases are learned from constructed biomedical knowledge graphs (KGs) which encompasses known drug-related and disease-related interactions. Next, the similarity features and topological features are fused by utilizing an attention-based feature fusion method. Finally, drug-disease associations are predicted using the graph convolutional network. Experimental results demonstrate that KGRDR achieves better performance when compared with the state-of-the-art drug-disease prediction methods. Moreover, case study results further validate the effectiveness of KGRDR in predicting novel drug-disease interactions.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Hui Yang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, China
| |
Collapse
|
4
|
Picard M, Leclercq M, Bodein A, Scott-Boyer MP, Perin O, Droit A. Improving drug repositioning with negative data labeling using large language models. J Cheminform 2025; 17:16. [PMID: 39905466 DOI: 10.1186/s13321-025-00962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION Drug repositioning offers numerous advantages, such as faster development timelines, reduced costs, and lower failure rates in drug development. Supervised machine learning is commonly used to score drug candidates but is hindered by the lack of reliable negative data-drugs that fail due to inefficacy or toxicity- which is difficult to access, lowering their prediction accuracy and generalization. Positive-Unlabeled (PU) learning has been used to overcome this issue by either randomly sampling unlabeled drugs or identifying probable negatives but still suffers from misclassification or oversimplified decision boundaries. RESULTS We proposed a novel strategy using Large Language Models (GPT-4) to analyze all clinical trials on prostate cancer and systematically identify true negatives. This approach showed remarkable improvement in predictive accuracy on independent test sets with a Matthews Correlation Coefficient of 0.76 (± 0.33) compared to 0.55 (± 0.15) and 0.48 (± 0.18) for two commonly used PU learning approaches. Using our labeling strategy, we created a training set of 26 positive and 54 experimentally validated negative drugs. We then applied a machine learning ensemble to this new dataset to assess the repurposing potential of the remaining 11,043 drugs in the DrugBank database. This analysis identified 980 potential candidates for prostate cancer. A detailed review of the top 30 revealed 9 promising drugs targeting various mechanisms such as genomic instability, p53 regulation, or TMPRSS2-ERG fusion. CONCLUSION By expanding our negative data labeling approach to all diseases within the ClinicalTrials.gov database, our method could greatly advance supervised drug repositioning, offering a more accurate and data-driven path for discovering new treatments.
Collapse
Affiliation(s)
- Milan Picard
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickael Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Perin
- Digital Transformation and Innovation Department, L'Oréal Advanced Research, Aulnay-Sous-Bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada.
| |
Collapse
|
5
|
Picard M, Scott-Boyer MP, Bodein A, Leclercq M, Prunier J, Périn O, Droit A. Target repositioning using multi-layer networks and machine learning: The case of prostate cancer. Comput Struct Biotechnol J 2024; 24:464-475. [PMID: 38983753 PMCID: PMC11231507 DOI: 10.1016/j.csbj.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
The discovery of novel therapeutic targets, defined as proteins which drugs can interact with to induce therapeutic benefits, typically represent the first and most important step of drug discovery. One solution for target discovery is target repositioning, a strategy which relies on the repurposing of known targets for new diseases, leading to new treatments, less side effects and potential drug synergies. Biological networks have emerged as powerful tools for integrating heterogeneous data and facilitating the prediction of biological or therapeutic properties. Consequently, they are widely employed to predict new therapeutic targets by characterizing potential candidates, often based on their interactions within a Protein-Protein Interaction (PPI) network, and their proximity to genes associated with the disease. However, over-reliance on PPI networks and the assumption that potential targets are necessarily near known genes can introduce biases that may limit the effectiveness of these methods. This study addresses these limitations in two ways. First, by exploiting a multi-layer network which incorporates additional information such as gene regulation, metabolite interactions, metabolic pathways, and several disease signatures such as Differentially Expressed Genes, mutated genes, Copy Number Alteration, and structural variants. Second, by extracting relevant features from the network using several approaches including proximity to disease-associated genes, but also unbiased approaches such as propagation-based methods, topological metrics, and module detection algorithms. Using prostate cancer as a case study, the best features were identified and utilized to train machine learning algorithms to predict 5 novel promising therapeutic targets for prostate cancer: IGF2R, C5AR, RAB7, SETD2 and NPBWR1.
Collapse
Affiliation(s)
- Milan Picard
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Julien Prunier
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Transformation and Innovation Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Ohnuki Y, Akiyama M, Sakakibara Y. Deep learning of multimodal networks with topological regularization for drug repositioning. J Cheminform 2024; 16:103. [PMID: 39180095 PMCID: PMC11342530 DOI: 10.1186/s13321-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
MOTIVATION Computational techniques for drug-disease prediction are essential in enhancing drug discovery and repositioning. While many methods utilize multimodal networks from various biological databases, few integrate comprehensive multi-omics data, including transcriptomes, proteomes, and metabolomes. We introduce STRGNN, a novel graph deep learning approach that predicts drug-disease relationships using extensive multimodal networks comprising proteins, RNAs, metabolites, and compounds. We have constructed a detailed dataset incorporating multi-omics data and developed a learning algorithm with topological regularization. This algorithm selectively leverages informative modalities while filtering out redundancies. RESULTS STRGNN demonstrates superior accuracy compared to existing methods and has identified several novel drug effects, corroborating existing literature. STRGNN emerges as a powerful tool for drug prediction and discovery. The source code for STRGNN, along with the dataset for performance evaluation, is available at https://github.com/yuto-ohnuki/STRGNN.git .
Collapse
Affiliation(s)
- Yuto Ohnuki
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Manato Akiyama
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
7
|
Wei X, Zhu T, Yip HF, Fu X, Jiang D, Deng Y, Lu A, Cao D. Predicting novel targets with Bayesian machine learning by integrating multiple biological signatures. Chem Sci 2024:d4sc03580a. [PMID: 39170720 PMCID: PMC11333953 DOI: 10.1039/d4sc03580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
The identification of targets for candidate molecules is a pivotal stride in the drug development journey, encompassing lead discovery, drug repurposing, and the scrutiny of potential off-target or side effects. Consequently, enhancing the precision of target prediction has significant implications. Moreover, current target prediction methods primarily rely on the principle of ligand-based chemical similarity, lacking the capture of novel compound-target relationships based on ligand high-level characterization similarity. Therefore, in this context, we introduce a pioneering algorithm known as the Fused Multiple Biological Signatures (FMBS) strategy. This approach leverages a Bayesian framework to amalgamate 25 predictable biological space characterizations of molecules to predict novel targets through scaffold hopping, thereby improving target prediction accuracy and providing a versatile tool for a wide range of small-molecule target prediction. When juxtaposed with alternative target prediction methods, FMBS showcases notable efficacy, outperforming traditional descriptors. Through an analysis of scaffold hopping cases, we elucidate how FMBS attains heightened accuracy by assimilating comprehensive and complementary high-dimensional signatures, thereby underscoring its potential in unearthing novel compound-target relationships. The findings underscore that our approach adeptly pinpoints promising candidate targets, thereby expediting drug mechanism exploration through the integration of multiple high-level characterizations.
Collapse
Affiliation(s)
- Xiao Wei
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
| | - Tingfei Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| | - Hiu Fung Yip
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| | - Xiangzheng Fu
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| | - Dejun Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
| | - Youchao Deng
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| |
Collapse
|
8
|
Zhang W, Huang RS. Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data. Expert Opin Drug Discov 2024; 19:841-853. [PMID: 38860709 PMCID: PMC11537242 DOI: 10.1080/17460441.2024.2365370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Prostate cancer (PC) is the most common malignancy and accounts for a significant proportion of cancer deaths among men. Although initial therapy success can often be observed in patients diagnosed with localized PC, many patients eventually develop disease recurrence and metastasis. Without effective treatments, patients with aggressive PC display very poor survival. To curb the current high mortality rate, many investigations have been carried out to identify efficacious therapeutics. Compared to de novo drug designs, computational methods have been widely employed to offer actionable drug predictions in a fast and cost-efficient way. Particularly, powered by an increasing availability of next-generation sequencing molecular profiles from PC patients, computer-aided approaches can be tailored to screen for candidate drugs. AREAS COVERED Herein, the authors review the recent advances in computational methods for drug discovery utilizing molecular profiles from PC patients. Given the uniqueness in PC therapeutic needs, they discuss in detail the drug discovery goals of these studies, highlighting their translational values for clinically impactful drug nomination. EXPERT OPINION Evolving molecular profiling techniques may enable new perspectives for computer-aided approaches to offer drug candidates for different tumor microenvironments. With ongoing efforts to incorporate new compounds into large-scale high-throughput screens, the authors envision continued expansion of drug candidate pools.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - R. Stephanie Huang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
9
|
Son J, Kim D. Applying network link prediction in drug discovery: an overview of the literature. Expert Opin Drug Discov 2024; 19:43-56. [PMID: 37794688 DOI: 10.1080/17460441.2023.2267020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Network representation can give a holistic view of relationships for biomedical entities through network topology. Link prediction estimates the probability of link formation between the pair of unconnected nodes. In the drug discovery process, the link prediction method not only enables the detection of connectivity patterns but also predicts the effects of one biomedical entity to multiple entities simultaneously and vice versa, which is useful for many applications. AREAS COVERED The authors provide a comprehensive overview of network link prediction in drug discovery. Link prediction methodologies such as similarity-based approaches, embedding-based approaches, probabilistic model-based approaches, and preprocessing methods are summarized with examples. In addition to describing their properties and limitations, the authors discuss the applications of link prediction in drug discovery based on the relationship between biomedical concepts. EXPERT OPINION Link prediction is a powerful method to infer the existence of novel relationships in drug discovery. However, link prediction has been hampered by the sparsity of data and the lack of negative links in biomedical networks. With preprocessing to balance positive and negative samples and the collection of more data, the authors believe it is possible to develop more reliable link prediction methods that can become invaluable tools for successful drug discovery.
Collapse
Affiliation(s)
- Jeongtae Son
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Liu Y, Sang G, Liu Z, Pan Y, Cheng J, Zhang Y. MPTN: A message-passing transformer network for drug repurposing from knowledge graph. Comput Biol Med 2024; 168:107800. [PMID: 38043469 DOI: 10.1016/j.compbiomed.2023.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Drug repurposing (DR) based on knowledge graphs (KGs) is challenging, which uses knowledge graph reasoning models to predict new therapeutic pathways for existing drugs. With the rapid development of computing technology and the growing availability of validated biomedical data, various knowledge graph-based methods have been widely used to analyze and process complex and novel data to discover new indications for given drugs. However, existing methods need to be improved in extracting semantic information from contextual triples of biomedical entities. In this study, we propose a message-passing transformer network named MPTN based on knowledge graph for drug repurposing. Firstly, CompGCN is used as precoder to jointly aggregate entity and relation embeddings. Then, to fully capture the semantic information of entity context triples, the message propagating transformer module is designed. The module integrates the transformer into the message passing mechanism and incorporates the attention weight information of computing entity context triples into the entity embedding to update the entity embedding. Next, the residual connection is introduced to retain information as much as possible and improve prediction accuracy. Finally, MPTN utilizes the InteractE module as the decoder to obtain heterogeneous feature interactions in entity and relation representations and predict new pathways for drug treatment. Experiments on two datasets show that the model is superior to the existing knowledge graph embedding (KGE) learning methods.
Collapse
Affiliation(s)
- Yuanxin Liu
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Guoming Sang
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Zhi Liu
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yilin Pan
- School of Artificial Intelligence, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Junkai Cheng
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yijia Zhang
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| |
Collapse
|
11
|
Muniyappan S, Rayan AXA, Varrieth GT. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources. J Biomed Inform 2023; 147:104528. [PMID: 37858852 DOI: 10.1016/j.jbi.2023.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
MOTIVATION Drug repurposing (DR) is an imminent approach for identifying novel therapeutic indications for the available drugs and discovering novel drugs for previously untreatable diseases. Nowadays, DR has major attention in the pharmaceutical industry due to the high cost and time of launching new drugs to the market through traditional drug development. DR task majorly depends on genetic information since the drugs revert the modified Gene Expression (GE) of diseases to normal. Many of the existing studies have not considered the genetic importance of predicting the potential candidates. METHOD We proposed a novel multimodal framework that utilizes genetic aspects of drugs and diseases such as genes, pathways, gene signatures, or expression to enhance the performance of DR using various data sources. Firstly, the heterogeneous biological network (HBN) is constructed with three types of nodes namely drug, disease, and gene, and 4 types of edges similarities (drug, gene, and disease), drug-gene, gene-disease, and drug-disease. Next, a modified graph auto-encoder (GAE*) model is applied to learn the representation of drug and disease nodes using the topological structure and edge information. Secondly, the HBN is enhanced with the information extracted from biomedical literature and ontology using a novel semi-supervised pattern embedding-based bootstrapping model and novel DR perspective representation learning respectively to improve the prediction performance. Finally, our proposed system uses a neural network model to generate the probability score of drug-disease pairs. RESULTS We demonstrate the efficiency of the proposed model on various datasets and achieved outstanding performance in 5-fold cross-validation (AUC = 0.99, AUPR = 0.98). Further, we validated the top-ranked potential candidates using pathway analysis and proved that the known and predicted candidates share common genes in the pathways.
Collapse
Affiliation(s)
- Saranya Muniyappan
- Computer Science and Engineering, CEG Campus, Anna University, Chennai, Tamil Nadu, India.
| | | | | |
Collapse
|
12
|
Urakov AL, Shabanov PD. Physical-chemical repurposing of drugs. History of its formation in Russia. REVIEWS ON CLINICAL PHARMACOLOGY AND DRUG THERAPY 2023; 21:231-242. [DOI: 10.17816/rcf567782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
It is reported that the traditional scheme of finding and developing a new drug and conducting the whole complex of preclinical studies requires several thousand chemical compounds, hundreds of millions of US dollars and more than 12 years of work. It is shown that physicochemical pharmacology was born in Russia at the end of the 20th century, which in our days has been transformed into physicochemical repurposing of known medicines. The first successfully repurposed known drug was a solution of 4% potassium chloride, which had previously traditionally belonged to the group of macro- and microelements, used by intravenous injections to regulate acid-base balance and rhythmic activity of the heart. In 1983, it was stated that this medicinal solution, when heated to 3942C and applied topically by irrigation of the bleeding surface, could be classified as a vasoconstrictor and hemostatic drug. Hyperthermia was used as a physico-chemical reprofiling factor, which, according to the Arrhenius law, accelerated and intensified, on the one hand, the spastic action of K+ cations on the gaping blood vessels (formation of hyperkalium contracture in the smooth muscles of the vascular wall) and, on the other hand, the blood clotting process in the wound. In subsequent years, the promise of physicochemical repurposing of known drugs was shown on the example of water, hydrogen peroxide, sodium chloride and sodium bicarbonate by purposefully changing their temperature, acid, osmotic activity, as well as the amount and quality of gas content (passing). A chronology of the physicochemical repurposing of known drug solutions and tablets is described and the essence of such new groups of drugs as bleachers of bruises and pyolytics is given. It is shown that both groups of drugs were discovered in Russia and are intended for local use to bleach bruises (blood stains) and dissolve thick mucus, sputum, pus, blood clots, meconium and other dense biological tissues containing the enzyme catalase. It is pointed out that the advantage and at the same time the limitation of the known drugs repurposed according to this scheme is their local application, since their new pharmacological activity is caused mainly by the physical and chemical principle of action, which is manifested by local interaction with the selected area of the patients organism.
Collapse
|
13
|
Ghorbanali Z, Zare-Mirakabad F, Salehi N, Akbari M, Masoudi-Nejad A. DrugRep-HeSiaGraph: when heterogenous siamese neural network meets knowledge graphs for drug repurposing. BMC Bioinformatics 2023; 24:374. [PMID: 37789314 PMCID: PMC10548718 DOI: 10.1186/s12859-023-05479-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Drug repurposing is an approach that holds promise for identifying new therapeutic uses for existing drugs. Recently, knowledge graphs have emerged as significant tools for addressing the challenges of drug repurposing. However, there are still major issues with constructing and embedding knowledge graphs. RESULTS This study proposes a two-step method called DrugRep-HeSiaGraph to address these challenges. The method integrates the drug-disease knowledge graph with the application of a heterogeneous siamese neural network. In the first step, a drug-disease knowledge graph named DDKG-V1 is constructed by defining new relationship types, and then numerical vector representations for the nodes are created using the distributional learning method. In the second step, a heterogeneous siamese neural network called HeSiaNet is applied to enrich the embedding of drugs and diseases by bringing them closer in a new unified latent space. Then, it predicts potential drug candidates for diseases. DrugRep-HeSiaGraph achieves impressive performance metrics, including an AUC-ROC of 91.16%, an AUC-PR of 90.32%, an accuracy of 84.63%, a BS of 0.119, and an MCC of 69.31%. CONCLUSION We demonstrate the effectiveness of the proposed method in identifying potential drugs for COVID-19 as a case study. In addition, this study shows the role of dipeptidyl peptidase 4 (DPP-4) as a potential receptor for SARS-CoV-2 and the effectiveness of DPP-4 inhibitors in facing COVID-19. This highlights the practical application of the model in addressing real-world challenges in the field of drug repurposing. The code and data for DrugRep-HeSiaGraph are publicly available at https://github.com/CBRC-lab/DrugRep-HeSiaGraph .
Collapse
Affiliation(s)
- Zahra Ghorbanali
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad Akbari
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Zhao H, Duan G, Ni P, Yan C, Li Y, Wang J. RNPredATC: A Deep Residual Learning-Based Model With Applications to the Prediction of Drug-ATC Code Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2712-2723. [PMID: 34110998 DOI: 10.1109/tcbb.2021.3088256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Anatomical Therapeutic Chemical (ATC) classification system, designated by the World Health Organization Collaborating Center (WHOCC), has been widely used in drug screening, repositioning, and similarity research. The ATC classification system assigns different codes to drugs according to the organ or system on which they act and/or their therapeutic and chemical characteristics. Correctly identifying the potential ATC codes for drugs can accelerate drug development and reduce the cost of experiments. Several classifiers have been proposed in this regard. However, they lack of ability to learn basic features from sparsely known drug-ATC code associations. Therefore, there is an urgent need for novel computational methods to precisely predict potential drug-ATC code associations in multiple levels of the ATC classification system based on known associations between drugs and ATC codes. In this paper, we provide a novel end-to-end model, so-called RNPredATC, to predict potential drug-ATC code associations in five ATC classification levels. RNPredATC can extract dense feature vectors from sparsely known drug-ATC code associations and reduce the impact from the degradation problem by a novel deep residual learning. We extensively compare our method with some state-of-the-art methods, including NetPredATC, SPACE, and some multi-label-based methods. Our experimental results show that RNPredATC achieves better performances in five-fold and ten-fold cross validations. Furthermore, the visualization analysis of hidden layers and case studies of predicted associations at the fifth ATC classification level confirm that RNPredATC can effectively identify the potential ATC codes of drugs.
Collapse
|
15
|
Shahzad M, Tahir MA, Alhussein M, Mobin A, Shams Malick RA, Anwar MS. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response. Diagnostics (Basel) 2023; 13:2043. [PMID: 37370938 DOI: 10.3390/diagnostics13122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
With the beginning of the high-throughput screening, in silico-based drug response analysis has opened lots of research avenues in the field of personalized medicine. For a decade, many different predicting techniques have been recommended for the antineoplastic (anti-cancer) drug response, but still, there is a need for improvements in drug sensitivity prediction. The intent of this research study is to propose a framework, namely NeuPD, to validate the potential anti-cancer drugs against a panel of cancer cell lines in publicly available datasets. The datasets used in this work are Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). As not all drugs are effective on cancer cell lines, we have worked on 10 essential drugs from the GDSC dataset that have achieved the best modeling results in previous studies. We also extracted 1610 essential oncogene expressions from 983 cell lines from the same dataset. Whereas, from the CCLE dataset, 16,383 gene expressions from 1037 cell lines and 24 drugs have been used in our experiments. For dimensionality reduction, Pearson correlation is applied to best fit the model. We integrate the genomic features of cell lines and drugs' fingerprints to fit the neural network model. For evaluation of the proposed NeuPD framework, we have used repeated K-fold cross-validation with 5 times repeats where K = 10 to demonstrate the performance in terms of root mean square error (RMSE) and coefficient determination (R2). The results obtained on the GDSC dataset that were measured using these cost functions show that our proposed NeuPD framework has outperformed existing approaches with an RMSE of 0.490 and R2 of 0.929.
Collapse
Affiliation(s)
- Muhammad Shahzad
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Atif Tahir
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
| | - Ansharah Mobin
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Rauf Ahmed Shams Malick
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Shahid Anwar
- Department of AI and Software, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
16
|
Kang H, Hou L, Gu Y, Lu X, Li J, Li Q. Drug-disease association prediction with literature based multi-feature fusion. Front Pharmacol 2023; 14:1205144. [PMID: 37284317 PMCID: PMC10239876 DOI: 10.3389/fphar.2023.1205144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Exploring the potential efficacy of a drug is a valid approach for drug development with shorter development times and lower costs. Recently, several computational drug repositioning methods have been introduced to learn multi-features for potential association prediction. However, fully leveraging the vast amount of information in the scientific literature to enhance drug-disease association prediction is a great challenge. Methods: We constructed a drug-disease association prediction method called Literature Based Multi-Feature Fusion (LBMFF), which effectively integrated known drugs, diseases, side effects and target associations from public databases as well as literature semantic features. Specifically, a pre-training and fine-tuning BERT model was introduced to extract literature semantic information for similarity assessment. Then, we revealed drug and disease embeddings from the constructed fusion similarity matrix by a graph convolutional network with an attention mechanism. Results: LBMFF achieved superior performance in drug-disease association prediction with an AUC value of 0.8818 and an AUPR value of 0.5916. Discussion: LBMFF achieved relative improvements of 31.67% and 16.09%, respectively, over the second-best results, compared to single feature methods and seven existing state-of-the-art prediction methods on the same test datasets. Meanwhile, case studies have verified that LBMFF can discover new associations to accelerate drug development. The proposed benchmark dataset and source code are available at: https://github.com/kang-hongyu/LBMFF.
Collapse
Affiliation(s)
- Hongyu Kang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Hou
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaowen Gu
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Lu
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiao Li
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
17
|
Fan L, Wang L, Zhu X. A novel microbe-drug association prediction model based on stacked autoencoder with multi-head attention mechanism. Sci Rep 2023; 13:7396. [PMID: 37149692 PMCID: PMC10164153 DOI: 10.1038/s41598-023-34438-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023] Open
Abstract
Microbes are intimately tied to the occurrence of various diseases that cause serious hazards to human health, and play an essential role in drug discovery, clinical application, and drug quality control. In this manuscript, we put forward a novel prediction model named MDASAE based on a stacked autoencoder (SAE) with multi-head attention mechanism to infer potential microbe-drug associations. In MDASAE, we first constructed three kinds of microbe-related and drug-related similarity matrices based on known microbe-disease-drug associations respectively. And then, we fed two kinds of microbe-related and drug-related similarity matrices respectively into the SAE to learn node attribute features, and introduced a multi-head attention mechanism into the output layer of the SAE to enhance feature extraction. Thereafter, we further adopted the remaining microbe and drug similarity matrices to derive inter-node features by using the Restart Random Walk algorithm. After that, the node attribute features and inter-node features of microbes and drugs would be fused together to predict scores of possible associations between microbes and drugs. Finally, intensive comparison experiments and case studies based on different well-known public databases under 5-fold cross-validation and 10-fold cross-validation respectively, proved that MDASAE can effectively predict the potential microbe-drug associations.
Collapse
Affiliation(s)
- Liu Fan
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421010, China
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, 410022, China
| | - Lei Wang
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, 410022, China.
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Xianyou Zhu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421010, China.
| |
Collapse
|
18
|
Ghorbanali Z, Zare-Mirakabad F, Akbari M, Salehi N, Masoudi-Nejad A. DrugRep-KG: Toward Learning a Unified Latent Space for Drug Repurposing Using Knowledge Graphs. J Chem Inf Model 2023; 63:2532-2545. [PMID: 37023229 PMCID: PMC10109243 DOI: 10.1021/acs.jcim.2c01291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 04/08/2023]
Abstract
Drug repurposing or repositioning (DR) refers to finding new therapeutic applications for existing drugs. Current computational DR methods face data representation and negative data sampling challenges. Although retrospective studies attempt to operate various representations, it is a crucial step for an accurate prediction to aggregate these features and bring the associations between drugs and diseases into a unified latent space. In addition, the number of unknown associations between drugs and diseases, which is considered negative data, is much higher than the number of known associations, or positive data, leading to an imbalanced dataset. In this regard, we propose the DrugRep-KG method, which applies a knowledge graph embedding approach for representing drugs and diseases, to address these challenges. Despite the typical DR methods that consider all unknown drug-disease associations as negative data, we select a subset of unknown associations, provided the disease occurs because of an adverse reaction to a drug. DrugRep-KG has been evaluated based on different settings and achieves an AUC-ROC (area under the receiver operating characteristic curve) of 90.83% and an AUC-PR (area under the precision-recall curve) of 90.10%, which are higher than in previous works. Besides, we checked the performance of our framework in finding potential drugs for coronavirus infection and skin-related diseases: contact dermatitis and atopic eczema. DrugRep-KG predicted beclomethasone for contact dermatitis, and fluorometholone, clocortolone, fluocinonide, and beclomethasone for atopic eczema, all of which have previously been proven to be effective in other studies. Fluorometholone for contact dermatitis is a novel suggestion by DrugRep-KG that should be validated experimentally. DrugRep-KG also predicted the associations between COVID-19 and potential treatments suggested by DrugBank, in addition to new drug candidates provided with experimental evidence. The data and code underlying this article are available at https://github.com/CBRC-lab/DrugRep-KG.
Collapse
Affiliation(s)
- Zahra Ghorbanali
- Department
of Mathematics and Computer Science, Amirkabir
University of Technology, Tehran 1591634311, Iran
| | - Fatemeh Zare-Mirakabad
- Department
of Mathematics and Computer Science, Amirkabir
University of Technology, Tehran 1591634311, Iran
| | - Mohammad Akbari
- Department
of Mathematics and Computer Science, Amirkabir
University of Technology, Tehran 1591634311, Iran
| | - Najmeh Salehi
- School
of Biological Science, Institute for Research
in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
| | - Ali Masoudi-Nejad
- Laboratory
of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry
and Biophysics, University of Tehran, Tehran 1417935840, Iran
| |
Collapse
|
19
|
An explainable framework for drug repositioning from disease information network. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Xiong Z, Huang F, Wang Z, Liu S, Zhang W. A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2623-2631. [PMID: 34375284 DOI: 10.1109/tcbb.2021.3103595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug repositioning/repurposing is a very important approach towards identifying novel treatments for diseases in drug discovery. Recently, large-scale biological datasets are increasingly available for pharmaceutical research and promote the development of drug repositioning, but efficiently utilizing these datasets remains challenging. In this paper, we develop a novel multimodal framework, termed GraphPK (Graph-based Prior Knowledge) for improving in silico drug repositioning via using the prior knowledge from a drug knowledge graph. First, we construct a knowledge graph by integrating relevant bio-entities (drugs, diseases, etc.) and associations/interactions among them, and apply the knowledge graph embedding technique to extract prior knowledge of drugs and diseases. Moreover, we make use of the known drug-disease association, and obtain known association-based features from an association bipartite graph through graph embedding, and also take into account biological domain features, i.e., drug chemical structures and disease semantic similarity. Finally, we design a multimodal neural network to combine three types of features from the knowledge graph, the known associations and the biological domain, and build the prediction model for predicting drug-disease associations. Massive experiments show that our method outperforms other state-of-the-art methods in terms of most metrics, and the ablation analysis regarding the three types of features reveals that prior knowledge from knowledge graphs can not only lift the predictive power of in silico drug repositioning, but also enhance the model's robustness to different scenarios. The results of case studies offer support that GraphPK has the potential for actual use.
Collapse
|
21
|
Gao Z, Ding P, Xu R. KG-Predict: A knowledge graph computational framework for drug repurposing. J Biomed Inform 2022; 132:104133. [PMID: 35840060 PMCID: PMC9595135 DOI: 10.1016/j.jbi.2022.104133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
Abstract
The emergence of large-scale phenotypic, genetic, and other multi-model biochemical data has offered unprecedented opportunities for drug discovery including drug repurposing. Various knowledge graph-based methods have been developed to integrate and analyze complex and heterogeneous data sources to find new therapeutic applications for existing drugs. However, existing methods have limitations in modeling and capturing context-sensitive inter-relationships among tens of thousands of biomedical entities. In this paper, we developed KG-Predict: a knowledge graph computational framework for drug repurposing. We first integrated multiple types of entities and relations from various genotypic and phenotypic databases to construct a knowledge graph termed GP-KG. GP-KG was composed of 1,246,726 associations between 61,146 entities. KG-Predict then aggregated the heterogeneous topological and semantic information from GP-KG to learn low-dimensional representations of entities and relations, and further utilized these representations to infer new drug-disease interactions. In cross-validation experiments, KG-Predict achieved high performances [AUROC (the area under receiver operating characteristic) = 0.981, AUPR (the area under precision-recall) = 0.409 and MRR (the mean reciprocal rank) = 0.261], outperforming other state-of-art graph embedding methods. We applied KG-Predict in identifying novel repositioned candidate drugs for Alzheimer's disease (AD) and showed that KG-Predict prioritized both FDA-approved and active clinical trial anti-AD drugs among the top (AUROC = 0.868 and AUPR = 0.364).
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| | - Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| |
Collapse
|
22
|
Identification of Potential Parkinson's Disease Drugs Based on Multi-Source Data Fusion and Convolutional Neural Network. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154780. [PMID: 35897954 PMCID: PMC9369596 DOI: 10.3390/molecules27154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
Abstract
Parkinson’s disease (PD) is a serious neurodegenerative disease. Most of the current treatment can only alleviate symptoms, but not stop the progress of the disease. Therefore, it is crucial to find medicines to completely cure PD. Finding new indications of existing drugs through drug repositioning can not only reduce risk and cost, but also improve research and development efficiently. A drug repurposing method was proposed to identify potential Parkinson’s disease-related drugs based on multi-source data integration and convolutional neural network. Multi-source data were used to construct similarity networks, and topology information were utilized to characterize drugs and PD-associated proteins. Then, diffusion component analysis method was employed to reduce the feature dimension. Finally, a convolutional neural network model was constructed to identify potential associations between existing drugs and LProts (PD-associated proteins). Based on 10-fold cross-validation, the developed method achieved an accuracy of 91.57%, specificity of 87.24%, sensitivity of 95.27%, Matthews correlation coefficient of 0.8304, area under the receiver operating characteristic curve of 0.9731 and area under the precision–recall curve of 0.9727, respectively. Compared with the state-of-the-art approaches, the current method demonstrates superiority in some aspects, such as sensitivity, accuracy, robustness, etc. In addition, some of the predicted potential PD therapeutics through molecular docking further proved that they can exert their efficacy by acting on the known targets of PD, and may be potential PD therapeutic drugs for further experimental research. It is anticipated that the current method may be considered as a powerful tool for drug repurposing and pathological mechanism studies.
Collapse
|
23
|
Rintala TJ, Ghosh A, Fortino V. Network approaches for modeling the effect of drugs and diseases. Brief Bioinform 2022; 23:6608969. [PMID: 35704883 PMCID: PMC9294412 DOI: 10.1093/bib/bbac229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The network approach is quickly becoming a fundamental building block of computational methods aiming at elucidating the mechanism of action (MoA) and therapeutic effect of drugs. By modeling the effect of drugs and diseases on different biological networks, it is possible to better explain the interplay between disease perturbations and drug targets as well as how drug compounds induce favorable biological responses and/or adverse effects. Omics technologies have been extensively used to generate the data needed to study the mechanisms of action of drugs and diseases. These data are often exploited to define condition-specific networks and to study whether drugs can reverse disease perturbations. In this review, we describe network data mining algorithms that are commonly used to study drug’s MoA and to improve our understanding of the basis of chronic diseases. These methods can support fundamental stages of the drug development process, including the identification of putative drug targets, the in silico screening of drug compounds and drug combinations for the treatment of diseases. We also discuss recent studies using biological and omics-driven networks to search for possible repurposed FDA-approved drug treatments for SARS-CoV-2 infections (COVID-19).
Collapse
Affiliation(s)
- T J Rintala
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Arindam Ghosh
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - V Fortino
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
24
|
Xuan P, Meng X, Gao L, Zhang T, Nakaguchi T. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction. Brief Bioinform 2022; 23:6565159. [PMID: 35393616 DOI: 10.1093/bib/bbac123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Identifying new uses of approved drugs is an effective way to reduce the time and cost of drug development. Recent computational approaches for predicting drug-disease associations have integrated multi-sourced data on drugs and diseases. However, neighboring topologies of various scales in multiple heterogeneous drug-disease networks have yet to be exploited and fully integrated. RESULTS We propose a novel method for drug-disease association prediction, called MGPred, used to encode and learn multi-scale neighboring topologies of drug and disease nodes and pairwise attributes from heterogeneous networks. First, we constructed three heterogeneous networks based on multiple kinds of drug similarities. Each network comprises drug and disease nodes and edges created based on node-wise similarities and associations that reflect specific topological structures. We also propose an embedding mechanism to formulate topologies that cover different ranges of neighbors. To encode the embeddings and derive multi-scale neighboring topology representations of drug and disease nodes, we propose a module based on graph convolutional autoencoders with shared parameters for each heterogeneous network. We also propose scale-level attention to obtain an adaptive fusion of informative topological representations at different scales. Finally, a learning module based on a convolutional neural network with various receptive fields is proposed to learn multi-view attribute representations of a pair of drug and disease nodes. Comprehensive experiment results demonstrate that MGPred outperforms other state-of-the-art methods in comparison to drug-related disease prediction, and the recall rates for the top-ranked candidates and case studies on five drugs further demonstrate the ability of MGPred to retrieve potential drug-disease associations.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China.,School of Computer Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiangfeng Meng
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Ling Gao
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Tiangang Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
25
|
Sadeghi S, Lu J, Ngom A. A network-based drug repurposing method via non-negative matrix factorization. Bioinformatics 2021; 38:1369-1377. [PMID: 34875000 PMCID: PMC8825773 DOI: 10.1093/bioinformatics/btab826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Drug repurposing is a potential alternative to the traditional drug discovery process. Drug repurposing can be formulated as a recommender system that recommends novel indications for available drugs based on known drug-disease associations. This article presents a method based on non-negative matrix factorization (NMF-DR) to predict the drug-related candidate disease indications. This work proposes a recommender system-based method for drug repurposing to predict novel drug indications by integrating drug and diseases related data sources. For this purpose, this framework first integrates two types of disease similarities, the associations between drugs and diseases, and the various similarities between drugs from different views to make a heterogeneous drug-disease interaction network. Then, an improved non-negative matrix factorization-based method is proposed to complete the drug-disease adjacency matrix with predicted scores for unknown drug-disease pairs. RESULTS The comprehensive experimental results show that NMF-DR achieves superior prediction performance when compared with several existing methods for drug-disease association prediction. AVAILABILITY AND IMPLEMENTATION The program is available at https://github.com/sshaghayeghs/NMF-DR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shaghayegh Sadeghi
- School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada,To whom correspondence should be addressed.
| | - Jianguo Lu
- School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
| | - Alioune Ngom
- School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
| |
Collapse
|
26
|
Wang F, Lei X, Liao B, Wu FX. Predicting drug-drug interactions by graph convolutional network with multi-kernel. Brief Bioinform 2021; 23:6447677. [PMID: 34864856 DOI: 10.1093/bib/bbab511] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
Drug repositioning is proposed to find novel usages for existing drugs. Among many types of drug repositioning approaches, predicting drug-drug interactions (DDIs) helps explore the pharmacological functions of drugs and achieves potential drugs for novel treatments. A number of models have been applied to predict DDIs. The DDI network, which is constructed from the known DDIs, is a common part in many of the existing methods. However, the functions of DDIs are different, and thus integrating them in a single DDI graph may overlook some useful information. We propose a graph convolutional network with multi-kernel (GCNMK) to predict potential DDIs. GCNMK adopts two DDI graph kernels for the graph convolutional layers, namely, increased DDI graph consisting of 'increase'-related DDIs and decreased DDI graph consisting of 'decrease'-related DDIs. The learned drug features are fed into a block with three fully connected layers for the DDI prediction. We compare various types of drug features, whereas the target feature of drugs outperforms all other types of features and their concatenated features. In comparison with three different DDI prediction methods, our proposed GCNMK achieves the best performance in terms of area under receiver operating characteristic curve and area under precision-recall curve. In case studies, we identify the top 20 potential DDIs from all unknown DDIs, and the top 10 potential DDIs from the unknown DDIs among breast, colorectal and lung neoplasms-related drugs. Most of them have evidence to support the existence of their interactions. fangxiang.wu@usask.ca.
Collapse
Affiliation(s)
- Fei Wang
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, 620 West Chang'an Avenue, 710119, Shaanxi, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, 99 Longkun South Road, 571158, Hainan, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
- Department of Mechanical Engineering and Department of Computer Science, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
| |
Collapse
|
27
|
Gao L, Cui H, Zhang T, Sheng N, Xuan P. Prediction of drug-disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets. Brief Bioinform 2021; 23:6446271. [PMID: 34850815 DOI: 10.1093/bib/bbab467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION The development process of a new drug is time-consuming and costly. Thus, identifying new uses for approved drugs, named drug repositioning, is helpful for speeding up the drug development process and reducing development costs. Existing drug-related disease prediction methods mainly focus on single or multiple drug-disease heterogeneous networks. However, heterogeneous networks, and drug subnets and disease subnet contained in heterogeneous networks cover the common topology information between drug and disease nodes, the specific information between drug nodes and the specific information between disease nodes, respectively. RESULTS We design a novel model, CTST, to extract and integrate common and specific topologies in multiple heterogeneous networks and subnets. Multiple heterogeneous networks composed of drug and disease nodes are established to integrate multiple kinds of similarities and associations among drug and disease nodes. These heterogeneous networks contain multiple drug subnets and a disease subnet. For multiple heterogeneous networks and subnets, we then define the common and specific representations of drug and disease nodes. The common representations of drug and disease nodes are encoded by a graph convolutional autoencoder with sharing parameters and they integrate the topological relationships of all nodes in heterogeneous networks. The specific representations of nodes are learned by specific graph convolutional autoencoders, respectively, and they fuse the topology and attributes of the nodes in each subnet. We then propose attention mechanisms at common representation level and specific representation level to learn more informative common and specific representations, respectively. Finally, an integration module with representation feature level attention is built to adaptively integrate these two representations for final association prediction. Extensive experimental results confirm the effectiveness of CTST. Comparison with six latest methods and case studies on five drugs further verify CTST has the ability to discover potential candidate diseases.
Collapse
Affiliation(s)
- Ling Gao
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Nan Sheng
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
28
|
A network representation approach for COVID-19 drug recommendation. Methods 2021; 198:3-10. [PMID: 34562584 PMCID: PMC8458160 DOI: 10.1016/j.ymeth.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has outbreak since early December 2019, and COVID-19 has caused over 100 million cases and 2 million deaths around the world. After one year of the COVID-19 outbreak, there is no certain and approve medicine against it. Drug repositioning has become one line of scientific research that is being pursued to develop an effective drug. However, due to the lack of COVID-19 data, there is still no specific drug repositioning targeting the COVID-19. In this paper, we propose a framework for COVID-19 drug repositioning. This framework has several advantages that can be exploited: one is that a local graph aggregating representation is used across a heterogeneous network to address the data sparsity problem; another is the multi-hop neighbors of the heterogeneous graph are aggregated to recall as many COVID-19 potential drugs as possible. Our experimental results show that our COVDR framework performs significantly better than baseline methods, and the docking simulation verifies that our three potential drugs have the ability to against COVID-19 disease.
Collapse
|
29
|
Su X, You Z, Wang L, Hu L, Wong L, Ji B, Zhao B. SANE: A sequence combined attentive network embedding model for COVID-19 drug repositioning. Appl Soft Comput 2021; 111:107831. [PMID: 34456656 PMCID: PMC8381638 DOI: 10.1016/j.asoc.2021.107831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 08/14/2021] [Indexed: 01/03/2023]
Abstract
The COVID-19 has now spread all over the world and causes a huge burden for public health and world economy. Drug repositioning has become a promising treatment strategy in COVID-19 crisis because it can shorten drug development process, reduce pharmaceutical costs and reposition approval drugs. Existing computational methods only focus on single information, such as drug and virus similarity or drug-virus network feature, which is not sufficient to predict potential drugs. In this paper, a sequence combined attentive network embedding model SANE is proposed for identifying drugs based on sequence features and network features. On the one hand, drug SMILES and virus sequence features are extracted by encoder-decoder in SANE as node initial embedding in drug-virus network. On the other hand, SANE obtains fields for each node by attention-based Depth-First-Search (DFS) to reduce noises and improve efficiency in representation learning and adopts a bottom-up aggregation strategy to learn node network representation from selected fields. Finally, a forward neural network is used for classifying. Experiment results show that SANE has achieved the performance with 81.98% accuracy and 0.8961 AUC value and outperformed state-of-the-art baselines. Further case study on COVID-19 indicates that SANE has a strong predictive ability since 25 of the top 40 (62.5%) drugs are verified by valuable dataset and literatures. Therefore, SANE is powerful to reposition drugs for COVID-19 and provides a new perspective for drug repositioning.
Collapse
Affiliation(s)
- Xiaorui Su
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Zhuhong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Lei Wang
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Science, Nanning, 530007, China
| | - Lun Hu
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Leon Wong
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Science, Nanning, 530007, China
| | - Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Bowei Zhao
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| |
Collapse
|
30
|
Yan C, Feng L, Wang W, Wang J, Zhang G, Luo J. A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures. Curr Mol Med 2021; 20:442-451. [PMID: 31729291 DOI: 10.2174/1566524019666191115103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Drug repositioning refers to discovering new indications for the existing drugs, which can improve the efficiency of drug research and development. METHODS In this work, a novel drug repositioning approach based on integrative multiple similarity measure, called DR_IMSM, is proposed. The process of integrative similarity measure contains three steps. First, a heterogeneous network can be constructed based on known drug-disease association, shared entities information for drug pairwise and diseases pairwise. Second, a deep learning method, DeepWalk, is used to capture the topology similarity for drug and disease. Third, a similarity integration and adjusting process is further conducted to obtain more comprehensive drug and disease similarity measure, respectively. RESULTS On this basis, a Bi-random walk algorithm is implemented in the constructed heterogeneous network to rank diseases for each drug. Compared with other approaches, the proposed DR_IMSM can achieve superior performance in terms of AUC on the gold standard datasets. Case studies further confirm the practical significance of DR_IMSM.
Collapse
Affiliation(s)
- Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Luping Feng
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Wenxiu Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
31
|
Zhou D, Peng S, Wei DQ, Zhong W, Dou Y, Xie X. LUNAR :Drug Screening for Novel Coronavirus Based on Representation Learning Graph Convolutional Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1290-1298. [PMID: 34081583 PMCID: PMC8769035 DOI: 10.1109/tcbb.2021.3085972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/23/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
An outbreak of COVID-19 that began in late 2019 was caused by a novel coronavirus(SARS-CoV-2). It has become a global pandemic. As of June 9, 2020, it has infected nearly 7 million people and killed more than 400,000, but there is no specific drug. Therefore, there is an urgent need to find or develop more drugs to suppress the virus. Here, we propose a new nonlinear end-to-end model called LUNAR. It uses graph convolutional neural networks to automatically learn the neighborhood information of complex heterogeneous relational networks and combines the attention mechanism to reflect the importance of the sum of different types of neighborhood information to obtain the representation characteristics of each node. Finally, through the topology reconstruction process, the feature representations of drugs and targets are forcibly extracted to match the observed network as much as possible. Through this reconstruction process, we obtain the strength of the relationship between different nodes and predict drug candidates that may affect the treatment of COVID-19 based on the known targets of COVID-19. These selected candidate drugs can be used as a reference for experimental scientists and accelerate the speed of drug development. LUNAR can well integrate various topological structure information in heterogeneous networks, and skillfully combine attention mechanisms to reflect the importance of neighborhood information of different types of nodes, improving the interpretability of the model. The area under the curve(AUC) of the model is 0.949 and the accurate recall curve (AUPR) is 0.866 using 10-fold cross-validation. These two performance indexes show that the model has superior predictive performance. Besides, some of the drugs screened out by our model have appeared in some clinical studies to further illustrate the effectiveness of the model.
Collapse
Affiliation(s)
- Deshan Zhou
- College of Computer ScienceHunan UniversityChangshaHunan410082China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering & National Supercomputing Centre in ChangshaHunan UniversityChangshaHunan410082China
- School of Computer ScienceNational University of Defense TechnologyChangshaHunan410082China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200030China
- Peng Cheng LaboratoryShenzhenGuangdong518055China
| | - Wu Zhong
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Yutao Dou
- School of Computer ScienceThe University of SydneySydneyNSW2006Australia
| | - Xiaolan Xie
- School of Information Science and EngineeringGuilin University of TechnologyGuilin CityGuangxi541004China
| |
Collapse
|
32
|
Chtita S, Belhassan A, Aouidate A, Belaidi S, Bouachrine M, Lakhlifi T. Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening. Comb Chem High Throughput Screen 2021; 24:441-454. [PMID: 32748740 DOI: 10.2174/1386207323999200730205447] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) pandemic continues to threaten patients, societies and healthcare systems around the world. There is an urgent need to search for possible medications. OBJECTIVE This article intends to use virtual screening and molecular docking methods to find potential inhibitors from existing drugs that can respond to COVID-19. METHODS To take part in the current research investigation and to define a potential target drug that may protect the world from the pandemic of corona disease, a virtual screening study of 129 approved drugs was carried out which showed that their metabolic characteristics, dosages used, potential efficacy and side effects are clear as they have been approved for treating existing infections. Especially 12 drugs against chronic hepatitis B virus, 37 against chronic hepatitis C virus, 37 against human immunodeficiency virus, 14 anti-herpesvirus, 11 anti-influenza, and 18 other drugs currently on the market were considered for this study. These drugs were then evaluated using virtual screening and molecular docking studies on the active site of the (SARS-CoV-2) main protease (6lu7). Once the efficacy of the drug is determined, it can be approved for its in vitro and in vivo activity against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which can be beneficial for the rapid clinical treatment of patients. These drugs were considered potentially effective against SARS-CoV-2 and those with high molecular docking scores were proposed as novel candidates for repurposing. The N3 inhibitor cocrystallized with protease (6lu7) and the anti-HIV protease inhibitor Lopinavir were used as standards for comparison. RESULTS The results suggest the effectiveness of Beclabuvir, Nilotinib, Tirilazad, Trametinib and Glecaprevir as potent drugs against SARS-CoV-2 since they tightly bind to its main protease. CONCLUSION These promising drugs can inhibit the replication of the virus; hence, the repurposing of these compounds is suggested for the treatment of COVID-19. No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA. However, the assessment of these potential inhibitors as clinical drugs requires further in vivo tests of these drugs.
Collapse
Affiliation(s)
- Samir Chtita
- Laboratory of Physical Chemistry of Materials, Faculty of sciences Ben M'Sik, Hassan II University of Casablanca, B.P. 7955 Sidi Othmane, Casablanca, Morocco
| | - Assia Belhassan
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes, Morocco
| | - Adnane Aouidate
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes, Morocco
| | - Salah Belaidi
- Laboratory of Molecular Chemistry and Environment, Group of Computational and pharmaceutical Chemistry, University of Biskra, BP145, 07000, Biskra, Algeria
| | - Mohammed Bouachrine
- High School of Technology of Khenifra, Sultan Slimane University, B.P. 591, Khenifra, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes, Morocco
| |
Collapse
|
33
|
Li M, Wang Y, Zheng R, Shi X, Li Y, Wu FX, Wang J. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:575-582. [PMID: 31150344 DOI: 10.1109/tcbb.2019.2919581] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-throughput screening technologies have provided a large amount of drug sensitivity data for a panel of cancer cell lines and hundreds of compounds. Computational approaches to analyzing these data can benefit anticancer therapeutics by identifying molecular genomic determinants of drug sensitivity and developing new anticancer drugs. In this study, we have developed a deep learning architecture to improve the performance of drug sensitivity prediction based on these data. We integrated both genomic features of cell lines and chemical information of compounds to predict the half maximal inhibitory concentrations [Formula: see text] on the Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in Cancer (GDSC) datasets using a deep neural network, which we called DeepDSC. Specifically, we first applied a stacked deep autoencoder to extract genomic features of cell lines from gene expression data, and then combined the compounds' chemical features to these genomic features to produce final response data. We conducted 10-fold cross-validation to demonstrate the performance of our deep model in terms of root-mean-square error (RMSE) and coefficient of determination [Formula: see text]. We show that our model outperforms the previous approaches with RMSE of 0.23 and [Formula: see text] of 0.78 on CCLE dataset, and RMSE of 0.52 and [Formula: see text] of 0.78 on GDSC dataset, respectively. Moreover, to demonstrate the prediction ability of our models on novel cell lines or novel compounds, we left cell lines originating from the same tissue and each compound out as the test sets, respectively, and the rest as training sets. The performance was comparable to other methods.
Collapse
|
34
|
Chtita S, Belhassan A, Aouidate A, Belaidi S, Bouachrine M, Lakhlifi T. Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening. Comb Chem High Throughput Screen 2021. [DOI: 10.2174/1386207323999200730205447 10.1093/glycob/1.6.631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background:
Coronavirus Disease 2019 (COVID-19) pandemic continues to threaten
patients, societies and healthcare systems around the world. There is an urgent need to search for
possible medications.
Objective:
This article intends to use virtual screening and molecular docking methods to find
potential inhibitors from existing drugs that can respond to COVID-19.
Methods:
To take part in the current research investigation and to define a potential target
drug that may protect the world from the pandemic of corona disease, a virtual screening
study of 129 approved drugs was carried out which showed that their metabolic
characteristics, dosages used, potential efficacy and side effects are clear as they have been
approved for treating existing infections. Especially 12 drugs against chronic hepatitis B
virus, 37 against chronic hepatitis C virus, 37 against human immunodeficiency virus, 14
anti-herpesvirus, 11 anti-influenza, and 18 other drugs currently on the market were
considered for this study. These drugs were then evaluated using virtual screening and
molecular docking studies on the active site of the (SARS-CoV-2) main protease (6lu7). Once
the efficacy of the drug is determined, it can be approved for its in vitro and in vivo
activity against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which
can be beneficial for the rapid clinical treatment of patients.
:
These drugs were considered potentially effective against SARS-CoV-2 and those with high
molecular docking scores were proposed as novel candidates for repurposing. The N3 inhibitor cocrystallized
with protease (6lu7) and the anti-HIV protease inhibitor Lopinavir were used as
standards for comparison.
Results:
The results suggest the effectiveness of Beclabuvir, Nilotinib, Tirilazad, Trametinib and
Glecaprevir as potent drugs against SARS-CoV-2 since they tightly bind to its main protease.
Conclusion:
These promising drugs can inhibit the replication of the virus; hence, the repurposing
of these compounds is suggested for the treatment of COVID-19. No toxicity measurements are
required for these drugs since they were previously tested prior to their approval by the FDA.
However, the assessment of these potential inhibitors as clinical drugs requires further in vivo tests
of these drugs.
Collapse
Affiliation(s)
- Samir Chtita
- Laboratory of Physical Chemistry of Materials, Faculty of sciences Ben M’Sik, Hassan II University of Casablanca, B.P. 7955 Sidi Othmane, Casablanca,Morocco
| | - Assia Belhassan
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes,Morocco
| | - Adnane Aouidate
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes,Morocco
| | - Salah Belaidi
- Laboratory of Molecular Chemistry and Environment, Group of Computational and pharmaceutical Chemistry, University of Biskra, BP145, 07000, Biskra,Algeria
| | - Mohammed Bouachrine
- High School of Technology of Khenifra, Sultan Slimane University, B.P. 591, Khenifra,Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, B.P. 11201 Zitoune, Meknes,Morocco
| |
Collapse
|
35
|
Sadeghi SS, Keyvanpour MR. An Analytical Review of Computational Drug Repurposing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:472-488. [PMID: 31403439 DOI: 10.1109/tcbb.2019.2933825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug repurposing is a vital function in pharmaceutical fields and has gained popularity in recent years in both the pharmaceutical industry and research community. It refers to the process of discovering new uses and indications for existing or failed drugs. It is cost-effective and reliable in contrast to experimental drug discovery, which is a costly, time-consuming, and risky process and limited to a relatively small number of targets. Accordingly, a plethora of computational methodologies have been propounded to repurpose drugs on a large scale by utilizing available high throughput data. The available literature, however, lacks a contemporary and comprehensive analysis of the current computational drug repurposing methodologies. In this paper, we presented a systematic analysis of computational drug repurposing which consists of three main sections: Initially, we categorize the computational drug repurposing methods based on their technical approach and artificial intelligence perspective and discuss the strengths and weaknesses of various methods. Secondly, some general criteria are recommended to analyze our proposed categorization. In the third and final section, a qualitative comparison is made between each approach which is a guide to understanding their preference to one another. Further, this systematic analysis can help in the efficient selection and improvement of drug repurposing techniques based on the nature of computational methods implemented on biological resources.
Collapse
|
36
|
Huang L, Luo H, Li S, Wu FX, Wang J. Drug-drug similarity measure and its applications. Brief Bioinform 2020; 22:5956929. [PMID: 33152756 DOI: 10.1093/bib/bbaa265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Drug similarities play an important role in modern biology and medicine, as they help scientists gain deep insights into drugs' therapeutic mechanisms and conduct wet labs that may significantly improve the efficiency of drug research and development. Nowadays, a number of drug-related databases have been constructed, with which many methods have been developed for computing similarities between drugs for studying associations between drugs, human diseases, proteins (drug targets) and more. In this review, firstly, we briefly introduce the publicly available drug-related databases. Secondly, based on different drug features, interaction relationships and multimodal data, we summarize similarity calculation methods in details. Then, we discuss the applications of drug similarities in various biological and medical areas. Finally, we evaluate drug similarity calculation methods with common evaluation metrics to illustrate the important roles of drug similarity measures on different applications.
Collapse
Affiliation(s)
- Lan Huang
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, China
| | - Huimin Luo
- School of Computer and Information Engineering at Henan University, Kaifeng, China
| | - Suning Li
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Fang-Xiang Wu
- College of Engineering and Department of Computer Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Jianxin Wang
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, China
| |
Collapse
|
37
|
Abstract
Network theory provides one of the most potent analysis tools for the study of complex systems. In this paper, we illustrate the network-based perspective in drug research and how it is coherent with the new paradigm of drug discovery. We first present data sources from which networks are built, then show some examples of how the networks can be used to investigate drug-related systems. A section is devoted to network-based inference applications, i.e., prediction methods based on interactomes, that can be used to identify putative drug-target interactions without resorting to 3D modeling. Finally, we present some aspects of Boolean networks dynamics, anticipating that it might become a very potent modeling framework to develop in silico screening protocols able to simulate phenotypic screening experiments. We conclude that network applications integrated with machine learning and 3D modeling methods will become an indispensable tool for computational drug discovery in the next years.
Collapse
Affiliation(s)
- Maurizio Recanatini
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Chiara Cabrelle
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
38
|
Zhang G, Hou J, Wang J, Yan C, Luo J. Feature Selection for Microarray Data Classification Using Hybrid Information Gain and a Modified Binary Krill Herd Algorithm. Interdiscip Sci 2020; 12:288-301. [PMID: 32441000 DOI: 10.1007/s12539-020-00372-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose.
Collapse
Affiliation(s)
- Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China.,Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, 475004, China
| | - Jincui Hou
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China.,Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, 475004, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China. .,Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng, 475004, China.
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China.
| |
Collapse
|
39
|
Yan C, Duan G, Pan Y, Wu FX, Wang J. DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels. BMC Bioinformatics 2019; 20:538. [PMID: 31874609 PMCID: PMC6929542 DOI: 10.1186/s12859-019-3093-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A drug-drug interaction (DDI) is defined as a drug effect modified by another drug, which is very common in treating complex diseases such as cancer. Many studies have evidenced that some DDIs could be an increase or a decrease of the drug effect. However, the adverse DDIs maybe result in severe morbidity and even morality of patients, which also cause some drugs to withdraw from the market. As the multi-drug treatment becomes more and more common, identifying the potential DDIs has become the key issue in drug development and disease treatment. However, traditional biological experimental methods, including in vitro and vivo, are very time-consuming and expensive to validate new DDIs. With the development of high-throughput sequencing technology, many pharmaceutical studies and various bioinformatics data provide unprecedented opportunities to study DDIs. RESULT In this study, we propose a method to predict new DDIs, namely DDIGIP, which is based on Gaussian Interaction Profile (GIP) kernel on the drug-drug interaction profiles and the Regularized Least Squares (RLS) classifier. In addition, we also use the k-nearest neighbors (KNN) to calculate the initial relational score in the presence of new drugs via the chemical, biological, phenotypic data of drugs. We compare the prediction performance of DDIGIP with other competing methods via the 5-fold cross validation, 10-cross validation and de novo drug validation. CONLUSION In 5-fold cross validation and 10-cross validation, DDRGIP method achieves the area under the ROC curve (AUC) of 0.9600 and 0.9636 which are better than state-of-the-art method (L1 Classifier ensemble method) of 0.9570 and 0.9599. Furthermore, for new drugs, the AUC value of DDIGIP in de novo drug validation reaches 0.9262 which also outperforms the other state-of-the-art method (Weighted average ensemble method) of 0.9073. Case studies and these results demonstrate that DDRGIP is an effective method to predict DDIs while being beneficial to drug development and disease treatment.
Collapse
Affiliation(s)
- Cheng Yan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
- School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000 China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| | - Yi Pan
- Department of Computer Science, Georgia State University, Atlanta, GA30302 USA
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9 Canada
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| |
Collapse
|
40
|
Automatic ICD code assignment of Chinese clinical notes based on multilayer attention BiRNN. J Biomed Inform 2019; 91:103114. [DOI: 10.1016/j.jbi.2019.103114] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Liu L, Yu Y, Fei Z, Li M, Wu FX, Li HD, Pan Y, Wang J. An interpretable boosting model to predict side effects of analgesics for osteoarthritis. BMC SYSTEMS BIOLOGY 2018; 12:105. [PMID: 30463545 PMCID: PMC6249730 DOI: 10.1186/s12918-018-0624-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common disease of arthritis. Analgesics are widely used in the treat of arthritis, which may increase the risk of cardiovascular diseases by 20% to 50% overall.There are few studies on the side effects of OA medication, especially the risk prediction models on side effects of analgesics. In addition, most prediction models do not provide clinically useful interpretable rules to explain the reasoning process behind their predictions. In order to assist OA patients, we use the eXtreme Gradient Boosting (XGBoost) method to balance the accuracy and interpretability of the prediction model. RESULTS In this study we used the XGBoost model as a classifier, which is a supervised machine learning method and can predict side effects of analgesics for OA patients and identify high-risk features (RFs) of cardiovascular diseases caused by analgesics. The Electronic Medical Records (EMRs), which were derived from public knee OA studies, were used to train the model. The performance of the XGBoost model is superior to four well-known machine learning algorithms and identifies the risk features from the biomedical literature. In addition the model can provide decision support for using analgesics in OA patients. CONCLUSION Compared with other machine learning methods, we used XGBoost method to predict side effects of analgesics for OA patients from EMRs, and selected the individual informative RFs. The model has good predictability and interpretability, this is valuable for both medical researchers and patients.
Collapse
Affiliation(s)
- Liangliang Liu
- School of Information Science and Engineering, Central South University, Changsha, China
- Department of Network Center, Pingdingshan University, Pingdingshan, 467000 China
| | - Ying Yu
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Zhihui Fei
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Min Li
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Fang-Xiang Wu
- Department of Mechanical Engineering and Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 Canada
| | - Hong-Dong Li
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Yi Pan
- Department of Computer Science,Georgia State University, Atlanta, GA30302 USA
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, Changsha, China
| |
Collapse
|