1
|
Chen J, Zhang H, Zou Q, Liao B, Bi XA. Multi-kernel Learning Fusion Algorithm Based on RNN and GRU for ASD Diagnosis and Pathogenic Brain Region Extraction. Interdiscip Sci 2024; 16:755-768. [PMID: 38683281 DOI: 10.1007/s12539-024-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
Autism spectrum disorder (ASD) is a complex, severe disorder related to brain development. It impairs patient language communication and social behaviors. In recent years, ASD researches have focused on a single-modal neuroimaging data, neglecting the complementarity between multi-modal data. This omission may lead to poor classification. Therefore, it is important to study multi-modal data of ASD for revealing its pathogenesis. Furthermore, recurrent neural network (RNN) and gated recurrent unit (GRU) are effective for sequence data processing. In this paper, we introduce a novel framework for a Multi-Kernel Learning Fusion algorithm based on RNN and GRU (MKLF-RAG). The framework utilizes RNN and GRU to provide feature selection for data of different modalities. Then these features are fused by MKLF algorithm to detect the pathological mechanisms of ASD and extract the most relevant the Regions of Interest (ROIs) for the disease. The MKLF-RAG proposed in this paper has been tested in a variety of experiments with the Autism Brain Imaging Data Exchange (ABIDE) database. Experimental findings indicate that our framework notably enhances the classification accuracy for ASD. Compared with other methods, MKLF-RAG demonstrates superior efficacy across multiple evaluation metrics and could provide valuable insights into the early diagnosis of ASD.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Huilian Zhang
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bo Liao
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Xia-An Bi
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China.
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China.
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China.
| |
Collapse
|
2
|
Ko W, Jung W, Jeon E, Suk HI. A Deep Generative-Discriminative Learning for Multimodal Representation in Imaging Genetics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2348-2359. [PMID: 35344489 DOI: 10.1109/tmi.2022.3162870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Imaging genetics, one of the foremost emerging topics in the medical imaging field, analyzes the inherent relations between neuroimaging and genetic data. As deep learning has gained widespread acceptance in many applications, pioneering studies employed deep learning frameworks for imaging genetics. However, existing approaches suffer from some limitations. First, they often adopt a simple strategy for joint learning of phenotypic and genotypic features. Second, their findings have not been extended to biomedical applications, e.g., degenerative brain disease diagnosis and cognitive score prediction. Finally, existing studies perform insufficient and inappropriate analyses from the perspective of data science and neuroscience. In this work, we propose a novel deep learning framework to simultaneously tackle the aforementioned issues. Our proposed framework learns to effectively represent the neuroimaging and the genetic data jointly, and achieves state-of-the-art performance when used for Alzheimer's disease and mild cognitive impairment identification. Furthermore, unlike the existing methods, the framework enables learning the relation between imaging phenotypes and genotypes in a nonlinear way without any prior neuroscientific knowledge. To demonstrate the validity of our proposed framework, we conducted experiments on a publicly available dataset and analyzed the results from diverse perspectives. Based on our experimental results, we believe that the proposed framework has immense potential to provide new insights and perspectives in deep learning-based imaging genetics studies.
Collapse
|
3
|
Bi XA, Zhou W, Li L, Xing Z. Detecting Risk Gene and Pathogenic Brain Region in EMCI Using a Novel GERF Algorithm Based on Brain Imaging and Genetic Data. IEEE J Biomed Health Inform 2021; 25:3019-3028. [PMID: 33750717 DOI: 10.1109/jbhi.2021.3067798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fusion analysis of disease-related multi-modal data is becoming increasingly important to illuminate the pathogenesis of complex brain diseases. However, owing to the small amount and high dimension of multi-modal data, current machine learning methods do not fully achieve the high veracity and reliability of fusion feature selection. In this paper, we propose a genetic-evolutionary random forest (GERF) algorithm to discover the risk genes and disease-related brain regions of early mild cognitive impairment (EMCI) based on the genetic data and resting-state functional magnetic resonance imaging (rs-fMRI) data. Classical correlation analysis method is used to explore the association between brain regions and genes, and fusion features are constructed. The genetic-evolutionary idea is introduced to enhance the classification performance, and to extract the optimal features effectively. The proposed GERF algorithm is evaluated by the public Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the results show that the algorithm achieves satisfactory classification accuracy in small sample learning. Moreover, we compare the GERF algorithm with other methods to prove its superiority. Furthermore, we propose the overall framework of detecting pathogenic factors, which can be accurately and efficiently applied to the multi-modal data analysis of EMCI and be able to extend to other diseases. This work provides a novel insight for early diagnosis and clinicopathologic analysis of EMCI, which facilitates clinical medicine to control further deterioration of diseases and is good for the accurate electric shock using transcranial magnetic stimulation.
Collapse
|
4
|
Alzheimer's disease diagnosis framework from incomplete multimodal data using convolutional neural networks. J Biomed Inform 2021; 121:103863. [PMID: 34229061 DOI: 10.1016/j.jbi.2021.103863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a severe irreversible neurodegenerative disease that has great sufferings on patients and eventually leads to death. Early detection of AD and its prodromal stage, mild cognitive impairment (MCI) which can be either stable (sMCI) or progressive (pMCI), is highly desirable for effective treatment planning and tailoring therapy. Recent studies recommended using multimodal data fusion of genetic (single nucleotide polymorphisms, SNPs) and neuroimaging data (magnetic resonance imaging (MRI) and positron emission tomography (PET)) to discriminate AD/MCI from normal control (NC) subjects. However, missing multimodal data in the cohort under study is inevitable. In addition, data heterogeneity between phenotypes and genotypes biomarkers makes learning capability of the models more challenging. Also, the current studies mainly focus on identifying brain disease classification and ignoring the regression task. Furthermore, they utilize multistage for predicting the brain disease progression. To address these issues, we propose a novel multimodal neuroimaging and genetic data fusion for joint classification and clinical score regression tasks using the maximum number of available samples in one unified framework using convolutional neural network (CNN). Specifically, we initially perform a technique based on linear interpolation to fill the missing features for each incomplete sample. Then, we learn the neuroimaging features from MRI, PET, and SNPs using CNN to alleviate the heterogeneity among genotype and phenotype data. Meanwhile, the high learned features from each modality are combined for jointly identifying brain diseases and predicting clinical scores. To validate the performance of the proposed method, we test our method on 805 subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Also, we verify the similarity between the synthetic and real data using statistical analysis. Moreover, the experimental results demonstrate that the proposed method can yield better performance in both classification and regression tasks. Specifically, our proposed method achieves accuracy of 98.22%, 93.11%, and 97.35% for NC vs. AD, NC vs. sMCI, and NC vs. pMCI, respectively. On the other hand, our method attains the lowest root mean square error and the highest correlation coefficient for different clinical scores regression tasks compared with the state-of-the-art methods.
Collapse
|
5
|
Zhou J, Hu L, Jiang Y, Liu L. A Correlation Analysis between SNPs and ROIs of Alzheimer's Disease Based on Deep Learning. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8890513. [PMID: 33628827 PMCID: PMC7886593 DOI: 10.1155/2021/8890513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/31/2022]
Abstract
Motivation. At present, the research methods for image genetics of Alzheimer's disease based on machine learning are mainly divided into three steps: the first step is to preprocess the original image and gene information into digital signals that are easy to calculate; the second step is feature selection aiming at eliminating redundant signals and obtain representative features; and the third step is to build a learning model and predict the unknown data with regression or bivariate correlation analysis. This type of method requires manual extraction of feature single-nucleotide polymorphisms (SNPs), and the extraction process relies on empirical knowledge to a certain extent, such as linkage imbalance and gene function information in a group sparse model, which puts forward certain requirements for applicable scenarios and application personnel. To solve the problems of insufficient biological significance and large errors in the previous methods of association analysis and disease diagnosis, this paper presents a method of correlation analysis and disease diagnosis between SNP and region of interest (ROI) based on a deep learning model. It is a data-driven method, which has no obvious feature selection process. Results. The deep learning method adopted in this paper has no obvious feature extraction process relying on prior knowledge and model assumptions. From the results of correlation analysis between SNP and ROI, this method is complementary to other regression model methods in application scenarios. In order to improve the disease diagnosis performance of deep learning, we use the deep learning model to integrate SNP characteristics and ROI characteristics. The SNP feature, ROI feature, and SNP-ROI joint feature were input into the deep learning model and trained by cross-validation technique. The experimental results show that the SNP-ROI joint feature describes the information of the samples from different angles, which makes the diagnosis accuracy higher.
Collapse
Affiliation(s)
- Juan Zhou
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Linfeng Hu
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Yu Jiang
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Liyue Liu
- School of Software, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
6
|
Zhou J, Qiu Y, Chen S, Liu L, Liao H, Chen H, Lv S, Li X. A Novel Three-Stage Framework for Association Analysis Between SNPs and Brain Regions. Front Genet 2020; 11:572350. [PMID: 33193677 PMCID: PMC7542238 DOI: 10.3389/fgene.2020.572350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Motivation: At present, a number of correlation analysis methods between SNPs and ROIs have been devised to explore the pathogenic mechanism of Alzheimer's disease. However, some of the deficiencies inherent in these methods, including lack of statistical efficacy and biological meaning. This study aims at addressing issues: insufficient correlation by previous methods (relative high regression error) and the lack of biological meaning in association analysis. Results: In this paper, a novel three-stage SNPs and ROIs correlation analysis framework is proposed. Firstly, clustering algorithm is applied to remove the potential linkage unbalanced structure of two SNPs. Then, the group sparse model is used to introduce prior information such as gene structure and linkage unbalanced structure to select feature SNPs. After the above steps, each SNP has a weight vector corresponding to each ROI, and the importance of SNPs can be judged according to the weights in the feature vector, and then the feature SNPs can be selected. Finally, for the selected feature SNPS, a support vector machine regression model is used to implement the prediction of the ROIs phenotype values. The experimental results under multiple performance measures show that the proposed method has better accuracy than other methods.
Collapse
Affiliation(s)
- Juan Zhou
- School of Software, East China Jiaotong University, Nanchang, China
| | - Yangping Qiu
- School of Software, East China Jiaotong University, Nanchang, China
| | - Shuo Chen
- School of Software, East China Jiaotong University, Nanchang, China
| | - Liyue Liu
- School of Software, East China Jiaotong University, Nanchang, China
| | - Huifa Liao
- School of Software, East China Jiaotong University, Nanchang, China
| | - Hongli Chen
- School of Software, East China Jiaotong University, Nanchang, China
| | - Shanguo Lv
- School of Software, East China Jiaotong University, Nanchang, China
| | - Xiong Li
- School of Software, East China Jiaotong University, Nanchang, China
| |
Collapse
|
7
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|