1
|
Akbar S, Raza A, Awan HH, Zou Q, Alghamdi W, Saeed A. pNPs-CapsNet: Predicting Neuropeptides Using Protein Language Models and FastText Encoding-Based Weighted Multi-View Feature Integration with Deep Capsule Neural Network. ACS OMEGA 2025; 10:12403-12416. [PMID: 40191328 PMCID: PMC11966582 DOI: 10.1021/acsomega.4c11449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/04/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025]
Abstract
Neuropeptides (NPs) are critical signaling molecules that are essential in numerous physiological processes and possess significant therapeutic potential. Computational prediction of NPs has emerged as a promising alternative to traditional experimental methods, often labor-intensive, time-consuming, and expensive. Recent advancements in computational peptide models provide a cost-effective approach to identifying NPs, characterized by high selectivity toward target cells and minimal side effects. In this study, we propose a novel deep capsule neural network-based computational model, namely pNPs-CapsNet, to predict NPs and non-NPs accurately. Input samples are numerically encoded using pretrained protein language models, including ESM, ProtBERT-BFD, and ProtT5, to extract attention mechanism-based contextual and semantic features. A differential evolution-based weighted feature integration method is utilized to construct a multiview vector. Additionally, a two-tier feature selection strategy, comprising MRMD and SHAP analysis, is developed to identify and select optimal features. Finally, the novel capsule neural network (CapsNet) is trained using the selected optimal feature set. The proposed pNPs-CapsNet model achieved a remarkable predictive accuracy of 98.10% and an AUC of 0.98. To validate the generalization capability of the pNPs-CapsNet model, independent samples reported an accuracy of 95.21% and an AUC of 0.96. The pNPs-CapsNet model outperforms existing state-of-the-art models, demonstrating 4% and 2.5% improved predictive accuracy for training and independent data sets, respectively. The demonstrated efficacy and consistency of pNPs-CapsNet underline its potential as a valuable and robust tool for advancing drug discovery and academic research.
Collapse
Affiliation(s)
- Shahid Akbar
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
- Department
of Computer Science, Abdul Wali Khan University
Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Ali Raza
- Department
of Computer Science, Bahria University, Islamabad 44220, Pakistan
| | - Hamid Hussain Awan
- Department
of Computer Science, Rawalpindi Women University, Rawalpindi 46300, Punjab, Pakistan
| | - Quan Zou
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze
Delta Region Institute (Quzhou), University
of Electronic Science and Technology of China, Quzhou 324000, PR China
| | - Wajdi Alghamdi
- Department
of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aamir Saeed
- Department
of Computer Science and IT, University of
Engineering and Technology, Jalozai Campus, Peshawar 25000, Pakistan
| |
Collapse
|
2
|
Akbar S, Ullah M, Raza A, Zou Q, Alghamdi W. DeepAIPs-Pred: Predicting Anti-Inflammatory Peptides Using Local Evolutionary Transformation Images and Structural Embedding-Based Optimal Descriptors with Self-Normalized BiTCNs. J Chem Inf Model 2024; 64:9609-9625. [PMID: 39625463 DOI: 10.1021/acs.jcim.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Inflammation is a biological response to harmful stimuli, playing a crucial role in facilitating tissue repair by eradicating pathogenic microorganisms. However, when inflammation becomes chronic, it leads to numerous serious disorders, particularly in autoimmune diseases. Anti-inflammatory peptides (AIPs) have emerged as promising therapeutic agents due to their high specificity, potency, and low toxicity. However, identifying AIPs using traditional in vivo methods is time-consuming and expensive. Recent advancements in computational-based intelligent models for peptides have offered a cost-effective alternative for identifying various inflammatory diseases, owing to their selectivity toward targeted cells with low side effects. In this paper, we propose a novel computational model, namely, DeepAIPs-Pred, for the accurate prediction of AIP sequences. The training samples are represented using LBP-PSSM- and LBP-SMR-based evolutionary image transformation methods. Additionally, to capture contextual semantic features, we employed attention-based ProtBERT-BFD embedding and QLC for structural features. Furthermore, differential evolution (DE)-based weighted feature integration is utilized to produce a multiview feature vector. The SMOTE-Tomek Links are introduced to address the class imbalance problem, and a two-layer feature selection technique is proposed to reduce and select the optimal features. Finally, the novel self-normalized bidirectional temporal convolutional networks (SnBiTCN) are trained using optimal features, achieving a significant predictive accuracy of 94.92% and an AUC of 0.97. The generalization of our proposed model is validated using two independent datasets, demonstrating higher performance with the improvement of ∼2 and ∼10% of accuracies than the existing state-of-the-art model using Ind-I and Ind-II, respectively. The efficacy and reliability of DeepAIPs-Pred highlight its potential as a valuable and promising tool for drug development and research academia.
Collapse
Affiliation(s)
- Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Matee Ullah
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Ullah M, Akbar S, Raza A, Khan KA, Zou Q. TargetCLP: clathrin proteins prediction combining transformed and evolutionary scale modeling-based multi-view features via weighted feature integration approach. Brief Bioinform 2024; 26:bbaf026. [PMID: 39844339 PMCID: PMC11753890 DOI: 10.1093/bib/bbaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Clathrin proteins, key elements of the vesicle coat, play a crucial role in various cellular processes, including neural function, signal transduction, and endocytosis. Disruptions in clathrin protein functions have been associated with a wide range of diseases, such as Alzheimer's, neurodegeneration, viral infection, and cancer. Therefore, correctly identifying clathrin protein functions is critical to unravel the mechanism of these fatal diseases and designing drug targets. This paper presents a novel computational method, named TargetCLP, to precisely identify clathrin proteins. TargetCLP leverages four single-view feature representation methods, including two transformed feature sets (PSSM-CLBP and RECM-CLBP), one qualitative characteristics feature, and one deep-learned-based embedding using ESM. The single-view features are integrated based on their weights using differential evolution, and the BTG feature selection algorithm is utilized to generate a more optimal and reduced subset. The model is trained using various classifiers, among which the proposed SnBiLSTM achieved remarkable performance. Experimental and comparative results on both training and independent datasets show that the proposed TargetCLP offers significant improvements in terms of both prediction accuracy and generalization to unseen data, furthering advancements in the research field.
Collapse
Affiliation(s)
- Matee Ullah
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Kashif Ahmad Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China
| |
Collapse
|
4
|
Zhu Y, Sun A. LGC-DBP: the method of DNA-binding protein identification based on PSSM and deep learning. Front Genet 2024; 15:1411847. [PMID: 38903752 PMCID: PMC11188361 DOI: 10.3389/fgene.2024.1411847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
The recognition of DNA Binding Proteins (DBPs) plays a crucial role in understanding biological functions such as replication, transcription, and repair. Although current sequence-based methods have shown some effectiveness, they often fail to fully utilize the potential of deep learning in capturing complex patterns. This study introduces a novel model, LGC-DBP, which integrates Long Short-Term Memory (LSTM), Gated Inception Convolution, and Improved Channel Attention mechanisms to enhance the prediction of DBPs. Initially, the model transforms protein sequences into Position Specific Scoring Matrices (PSSM), then processed through our deep learning framework. Within this framework, Gated Inception Convolution merges the concepts of gating units with the advantages of Graph Convolutional Network (GCN) and Dilated Convolution, significantly surpassing traditional convolution methods. The Improved Channel Attention mechanism substantially enhances the model's responsiveness and accuracy by shifting from a single input to three inputs and integrating three sigmoid functions along with an additional layer output. These innovative combinations have significantly improved model performance, enabling LGC-DBP to recognize and interpret the complex relationships within DBP features more accurately. The evaluation results show that LGC-DBP achieves an accuracy of 88.26% and a Matthews correlation coefficient of 0.701, both surpassing existing methods. These achievements demonstrate the model's strong capability in integrating and analyzing multi-dimensional data and mark a significant advancement over traditional methods by capturing deeper, nonlinear interactions within the data.
Collapse
Affiliation(s)
- Yiqi Zhu
- Department of Computer Science and Technology, College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | | |
Collapse
|
5
|
Mahmud SMH, Goh KOM, Hosen MF, Nandi D, Shoombuatong W. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features. Sci Rep 2024; 14:2961. [PMID: 38316843 PMCID: PMC10844231 DOI: 10.1038/s41598-024-52653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
DNA-binding proteins (DBPs) play a significant role in all phases of genetic processes, including DNA recombination, repair, and modification. They are often utilized in drug discovery as fundamental elements of steroids, antibiotics, and anticancer drugs. Predicting them poses the most challenging task in proteomics research. Conventional experimental methods for DBP identification are costly and sometimes biased toward prediction. Therefore, developing powerful computational methods that can accurately and rapidly identify DBPs from sequence information is an urgent need. In this study, we propose a novel deep learning-based method called Deep-WET to accurately identify DBPs from primary sequence information. In Deep-WET, we employed three powerful feature encoding schemes containing Global Vectors, Word2Vec, and fastText to encode the protein sequence. Subsequently, these three features were sequentially combined and weighted using the weights obtained from the elements learned through the differential evolution (DE) algorithm. To enhance the predictive performance of Deep-WET, we applied the SHapley Additive exPlanations approach to remove irrelevant features. Finally, the optimal feature subset was input into convolutional neural networks to construct the Deep-WET predictor. Both cross-validation and independent tests indicated that Deep-WET achieved superior predictive performance compared to conventional machine learning classifiers. In addition, in extensive independent test, Deep-WET was effective and outperformed than several state-of-the-art methods for DBP prediction, with accuracy of 78.08%, MCC of 0.559, and AUC of 0.805. This superior performance shows that Deep-WET has a tremendous predictive capacity to predict DBPs. The web server of Deep-WET and curated datasets in this study are available at https://deepwet-dna.monarcatechnical.com/ . The proposed Deep-WET is anticipated to serve the community-wide effort for large-scale identification of potential DBPs.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- Department of Computer Science, American International University-Bangladesh (AIUB), Kuratoli, Dhaka, 1229, Bangladesh.
- Centre for Advanced Machine Learning and Applications (CAMLAs), Dhaka, 1229, Bangladesh.
| | - Kah Ong Michael Goh
- Faculty of Information Science & Technology (FIST), Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia.
| | - Md Faruk Hosen
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Dip Nandi
- Department of Computer Science, American International University-Bangladesh (AIUB), Kuratoli, Dhaka, 1229, Bangladesh
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
6
|
Hu J, Zeng WW, Jia NX, Arif M, Yu DJ, Zhang GJ. Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm. J Chem Inf Model 2023; 63:1044-1057. [PMID: 36719781 DOI: 10.1021/acs.jcim.2c00943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.
Collapse
Affiliation(s)
- Jun Hu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou310023, China
| | - Wen-Wu Zeng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou310023, China
| | - Ning-Xin Jia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou310023, China
| | - Muhammad Arif
- School of Systems and Technology, Department of Informatics and Systems, University of Management and Technology, Lahore54770, Pakistan
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing210094, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou310023, China
| |
Collapse
|
7
|
DBP-iDWT: Improving DNA-Binding Proteins Prediction Using Multi-Perspective Evolutionary Profile and Discrete Wavelet Transform. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2987407. [PMID: 36211019 PMCID: PMC9534628 DOI: 10.1155/2022/2987407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
DNA-binding proteins (DBPs) have crucial biotic activities including DNA replication, recombination, and transcription. DBPs are highly concerned with chronic diseases and are used in the manufacturing of antibiotics and steroids. A series of predictors were established to identify DBPs. However, researchers are still working to further enhance the identification of DBPs. This research designed a novel predictor to identify DBPs more accurately. The features from the sequences are transformed by F-PSSM (Filtered position-specific scoring matrix), PSSM-DPC (Position specific scoring matrix-dipeptide composition), and R-PSSM (Reduced position-specific scoring matrix). To eliminate the noisy attributes, we extended DWT (discrete wavelet transform) to F-PSSM, PSSM-DPC, and R-PSSM and introduced three novel descriptors, namely, F-PSSM-DWT, PSSM-DPC-DWT, and R-PSSM-DWT. Onward, the training of the four models were performed using LiXGB (Light eXtreme gradient boosting), XGB (eXtreme gradient boosting, ERT (extremely randomized trees), and Adaboost. LiXGB with R-PSSM-DWT has attained 6.55% higher accuracy on training and 5.93% on testing dataset than the best existing predictors. The results reveal the excellent performance of our novel predictor over the past studies. DBP-iDWT would be fruitful for establishing more operative therapeutic strategies for fatal disease treatment.
Collapse
|
8
|
Arif M, Kabir M, Ahmed S, Khan A, Ge F, Khelifi A, Yu DJ. DeepCPPred: A Deep Learning Framework for the Discrimination of Cell-Penetrating Peptides and Their Uptake Efficiencies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2749-2759. [PMID: 34347603 DOI: 10.1109/tcbb.2021.3102133] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-penetrating peptides (CPPs) are special peptides capable of carrying a variety of bioactive molecules, such as genetic materials, short interfering RNAs and nanoparticles, into cells. Recently, research on CPP has gained substantial interest from researchers, and the biological mechanisms of CPPS have been assessed in the context of safe drug delivery agents and therapeutic applications. Correct identification and synthesis of CPPs using traditional biochemical methods is an extremely slow, expensive and laborious task particularly due to the large volume of unannotated peptide sequences accumulating in the World Bank repository. Hence, a powerful bioinformatics predictor that rapidly identifies CPPs with a high recognition rate is urgently needed. To date, numerous computational methods have been developed for CPP prediction. However, the available machine-learning (ML) tools are unable to distinguish both the CPPs and their uptake efficiencies. This study aimed to develop a two-layer deep learning framework named DeepCPPred to identify both CPPs in the first phase and peptide uptake efficiency in the second phase. The DeepCPPred predictor first uses four types of descriptors that cover evolutionary, energy estimation, reduced sequence and amino-acid contact information. Then, the extracted features are optimized through the elastic net algorithm and fed into a cascade deep forest algorithm to build the final CPP model. The proposed method achieved 99.45 percent overall accuracy with the CPP924 benchmark dataset in the first layer and 95.43 percent accuracy in the second layer with the CPPSite3 dataset using a 5-fold cross-validation test. Thus, our proposed bioinformatics tool surpassed all the existing state-of-the-art sequence-based CPP approaches.
Collapse
|
9
|
Peng CX, Zhou XG, Zhang GJ. De novo Protein Structure Prediction by Coupling Contact With Distance Profile. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:395-406. [PMID: 32750861 DOI: 10.1109/tcbb.2020.3000758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
De novo protein structure prediction is a challenging problem that requires both an accurate energy function and an efficient conformation sampling method. In this study, a de novo structure prediction method, named CoDiFold, is proposed. In CoDiFold, contacts and distance profiles are organically combined into the Rosetta low-resolution energy function to improve the accuracy of energy function. As a result, the correlation between energy and root mean square deviation (RMSD) is improved. In addition, a population-based multi-mutation strategy is designed to balance the exploration and exploitation of conformation space sampling. The average RMSD of the models generated by the proposed protocol is decreased by 49.24 and 45.21 percent in the test set with 43 proteins compared with those of Rosetta and QUARK de novo protocols, respectively. The results also demonstrate that the structures predicted by proposed CoDiFold are comparable to the state-of-the-art methods for the 10 FM targets of CASP13. The source code and executable versions are freely available at http://github.com/iobio-zjut/CoDiFold.
Collapse
|
10
|
Arif M, Ahmed S, Ge F, Kabir M, Khan YD, Yu DJ, Thafar M. StackACPred: Prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2022; 220:104458. [DOI: 10.1016/j.chemolab.2021.104458] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
|
11
|
Ding Y, Tang J, Guo F. Protein Crystallization Identification via Fuzzy Model on Linear Neighborhood Representation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1986-1995. [PMID: 31751248 DOI: 10.1109/tcbb.2019.2954826] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
X-ray crystallography is the most popular approach for analyzing protein 3D structure. However, the success rate of protein crystallization is very low (2-10 percent). To reduce the cost of time and resources, lots of computation-based methods are developed to detect the protein crystallization. Improving the accuracy of predicting protein crystallization is very important for the determination of protein structure by X-ray crystallography. At present, many machine learning methods are used to predict protein crystallization. In this article, we propose a Fuzzy Support Vector Machine based on Linear Neighborhood Representation (FSVM-LNR) to predict the crystallization propensity of proteins. Proteins are represented by three types of features (PsePSSM, PSSM-DWT, MMI-PS), and these features are serially combined and fed into FSVM-LNR. FSVM-LNR can filter outliers by membership score, which is calculated via reconstruction residuals of k nearest samples. To evaluate the performance of our predictive model, we test FSVM-LNR on the datasets of TRAIN3587, TEST3585 and TEST500. Our method achieves better Mathew's correlation coefficient (MCC) on TRAIN3587 (MCC: 0.56) and TEST3585 (MCC: 0.58). Although the performance of independent test is not the best on TEST500, FSVM-LNR also has a certain predictability (MCC: 0.70) in the identification of protein crystallization. The good performance on the datasets proves the effectiveness of our method and the better performance on large datasets further demonstrates the stability and superiority of our method.
Collapse
|
12
|
Zhu YH, Hu J, Ge F, Li F, Song J, Zhang Y, Yu DJ. Accurate multistage prediction of protein crystallization propensity using deep-cascade forest with sequence-based features. Brief Bioinform 2021; 22:bbaa076. [PMID: 32436937 DOI: 10.1093/bib/bbaa076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/13/2022] Open
Abstract
X-ray crystallography is the major approach for determining atomic-level protein structures. Because not all proteins can be easily crystallized, accurate prediction of protein crystallization propensity provides critical help in guiding experimental design and improving the success rate of X-ray crystallography experiments. This study has developed a new machine-learning-based pipeline that uses a newly developed deep-cascade forest (DCF) model with multiple types of sequence-based features to predict protein crystallization propensity. Based on the developed pipeline, two new protein crystallization propensity predictors, denoted as DCFCrystal and MDCFCrystal, have been implemented. DCFCrystal is a multistage predictor that can estimate the success propensities of the three individual steps (production of protein material, purification and production of crystals) in the protein crystallization process. MDCFCrystal is a single-stage predictor that aims to estimate the probability that a protein will pass through the entire crystallization process. Moreover, DCFCrystal is designed for general proteins, whereas MDCFCrystal is specially designed for membrane proteins, which are notoriously difficult to crystalize. DCFCrystal and MDCFCrystal were separately tested on two benchmark datasets consisting of 12 289 and 950 proteins, respectively, with known crystallization results from various experimental records. The experimental results demonstrated that DCFCrystal and MDCFCrystal increased the value of Matthew's correlation coefficient by 199.7% and 77.8%, respectively, compared to the best of other state-of-the-art protein crystallization propensity predictors. Detailed analyses show that the major advantages of DCFCrystal and MDCFCrystal lie in the efficiency of the DCF model and the sensitivity of the sequence-based features used, especially the newly designed pseudo-predicted hybrid solvent accessibility (PsePHSA) feature, which improves crystallization recognition by incorporating sequence-order information with solvent accessibility of residues. Meanwhile, the new crystal-dataset constructions help to train the models with more comprehensive crystallization knowledge.
Collapse
|
13
|
Nanni L, Brahnam S. Robust ensemble of handcrafted and learned approaches for DNA-binding proteins. APPLIED COMPUTING AND INFORMATICS 2021. [DOI: 10.1108/aci-03-2021-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Automatic DNA-binding protein (DNA-BP) classification is now an essential proteomic technology. Unfortunately, many systems reported in the literature are tested on only one or two datasets/tasks. The purpose of this study is to create the most optimal and universal system for DNA-BP classification, one that performs competitively across several DNA-BP classification tasks.
Design/methodology/approach
Efficient DNA-BP classifier systems require the discovery of powerful protein representations and feature extraction methods. Experiments were performed that combined and compared descriptors extracted from state-of-the-art matrix/image protein representations. These descriptors were trained on separate support vector machines (SVMs) and evaluated. Convolutional neural networks with different parameter settings were fine-tuned on two matrix representations of proteins. Decisions were fused with the SVMs using the weighted sum rule and evaluated to experimentally derive the most powerful general-purpose DNA-BP classifier system.
Findings
The best ensemble proposed here produced comparable, if not superior, classification results on a broad and fair comparison with the literature across four different datasets representing a variety of DNA-BP classification tasks, thereby demonstrating both the power and generalizability of the proposed system.
Originality/value
Most DNA-BP methods proposed in the literature are only validated on one (rarely two) datasets/tasks. In this work, the authors report the performance of our general-purpose DNA-BP system on four datasets representing different DNA-BP classification tasks. The excellent results of the proposed best classifier system demonstrate the power of the proposed approach. These results can now be used for baseline comparisons by other researchers in the field.
Collapse
|
14
|
Zhang GJ, Xie TY, Zhou XG, Wang LJ, Hu J. Protein Structure Prediction Using Population-Based Algorithm Guided by Information Entropy. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:697-707. [PMID: 31180869 DOI: 10.1109/tcbb.2019.2921958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ab initio protein structure prediction is one of the most challenging problems in computational biology. Multistage algorithms are widely used in ab initio protein structure prediction. The different computational costs of a multistage algorithm for different proteins are important to be considered. In this study, a population-based algorithm guided by information entropy (PAIE), which includes exploration and exploitation stages, is proposed for protein structure prediction. In PAIE, an entropy-based stage switch strategy is designed to switch from the exploration stage to the exploitation stage. Torsion angle statistical information is also deduced from the first stage and employed to enhance the exploitation in the second stage. Results indicate that an improvement in the performance of protein structure prediction in a benchmark of 30 proteins and 17 other free modeling targets in CASP.
Collapse
|
15
|
Zhang Y, Chen P, Gao Y, Ni J, Wang X. DBP-PSSM: Combination of Evolutionary Profiles with the XGBoost Algorithm to Improve the Identification of DNA-binding Proteins. Comb Chem High Throughput Screen 2020; 25:3-12. [PMID: 33238837 DOI: 10.2174/1386207323999201124203531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE DNA-binding proteins play important roles in a variety of biological processes, such as gene transcription and regulation, DNA replication and repair, DNA recombination and packaging, and the formation of chromatin and ribosomes. Therefore, it is urgent to develop a computational method to improve the recognition efficiency of DNA-binding proteins. METHODS We proposed a novel method, DBP-PSSM, which constructed the features from amino acid composition and evolutionary information of protein sequences. The maximum relevance, minimum redundancy (mRMR) was employed to select the optimal features for establishing the XGBoost classifier, therefore, the novel model of prediction DNA-binding proteins, DBP-PSSM, was established with 5-fold cross-validation on the training dataset. RESULTS DBP-PSSM achieved an accuracy of 81.18% and MCC of 0.657 in a test dataset, which outperformed the many existing methods. These results demonstrated that our method can effectively predict DNA-binding proteins. CONCLUSION The data and source code are provided at https://github.com/784221489/DNA-binding.
Collapse
Affiliation(s)
- Yanping Zhang
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038,China
| | - Pengcheng Chen
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038,China
| | - Ya Gao
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038,China
| | - Jianwei Ni
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038,China
| | - Xiaosheng Wang
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038,China
| |
Collapse
|
16
|
Zhang GJ, Wang XQ, Ma LF, Wang LJ, Hu J, Zhou XG. Two-Stage Distance Feature-based Optimization Algorithm for De novo Protein Structure Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:2119-2130. [PMID: 31107659 DOI: 10.1109/tcbb.2019.2917452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
De novo protein structure prediction can be treated as a conformational space optimization problem under the guidance of an energy function. However, it is a challenge of how to design an accurate energy function which ensures low-energy conformations close to native structures. Fortunately, recent studies have shown that the accuracy of de novo protein structure prediction can be significantly improved by integrating the residue-residue distance information. In this paper, a two-stage distance feature-based optimization algorithm (TDFO) for de novo protein structure prediction is proposed within the framework of evolutionary algorithm. In TDFO, a similarity model is first designed by using feature information which is extracted from distance profiles by bisecting K-means algorithm. The similarity model-based selection strategy is then developed to guide conformation search, and thus improve the quality of the predicted models. Moreover, global and local mutation strategies are designed, and a state estimation strategy is also proposed to strike a trade-off between the exploration and exploitation of the search space. Experimental results of 35 benchmark proteins show that the proposed TDFO can improve prediction accuracy for a large portion of test proteins.
Collapse
|
17
|
Acharya S, Cui L, Pan Y. A consensus multi-view multi-objective gene selection approach for improved sample classification. BMC Bioinformatics 2020; 21:386. [PMID: 32938388 PMCID: PMC7495900 DOI: 10.1186/s12859-020-03681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the field of computational biology, analyzing complex data helps to extract relevant biological information. Sample classification of gene expression data is one such popular bio-data analysis technique. However, the presence of a large number of irrelevant/redundant genes in expression data makes a sample classification algorithm working inefficiently. Feature selection is one such high-dimensionality reduction technique that helps to maximize the effectiveness of any sample classification algorithm. Recent advances in biotechnology have improved the biological data to include multi-modal or multiple views. Different 'omics' resources capture various equally important biological properties of entities. However, most of the existing feature selection methodologies are biased towards considering only one out of multiple biological resources. Consequently, some crucial aspects of available biological knowledge may get ignored, which could further improve feature selection efficiency. RESULTS In this present work, we have proposed a Consensus Multi-View Multi-objective Clustering-based feature selection algorithm called CMVMC. Three controlled genomic and proteomic resources like gene expression, Gene Ontology (GO), and protein-protein interaction network (PPIN) are utilized to build two independent views. The concept of multi-objective consensus clustering has been applied within our proposed gene selection method to satisfy both incorporated views. Gene expression data sets of Multiple tissues and Yeast from two different organisms (Homo Sapiens and Saccharomyces cerevisiae, respectively) are chosen for experimental purposes. As the end-product of CMVMC, a reduced set of relevant and non-redundant genes are found for each chosen data set. These genes finally participate in an effective sample classification. CONCLUSIONS The experimental study on chosen data sets shows that our proposed feature-selection method improves the sample classification accuracy and reduces the gene-space up to a significant level. In the case of Multiple Tissues data set, CMVMC reduces the number of genes (features) from 5565 to 41, with 92.73% of sample classification accuracy. For Yeast data set, the number of genes got reduced to 10 from 2884, with 95.84% sample classification accuracy. Two internal cluster validity indices - Silhouette and Davies-Bouldin (DB) and one external validity index Classification Accuracy (CA) are chosen for comparative study. Reported results are further validated through well-known biological significance test and visualization tool.
Collapse
Affiliation(s)
- Sudipta Acharya
- Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, PR China
| | - Laizhong Cui
- Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, PR China
| | - Yi Pan
- Department of Computer Science, Georgia State University, Atlanta, USA
| |
Collapse
|
18
|
Zhu YH, Hu J, Qi Y, Song XN, Yu DJ. Boosting Granular Support Vector Machines for the Accurate Prediction of Protein-Nucleotide Binding Sites. Comb Chem High Throughput Screen 2020; 22:455-469. [PMID: 31553288 DOI: 10.2174/1386207322666190925125524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/21/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE The accurate identification of protein-ligand binding sites helps elucidate protein function and facilitate the design of new drugs. Machine-learning-based methods have been widely used for the prediction of protein-ligand binding sites. Nevertheless, the severe class imbalance phenomenon, where the number of nonbinding (majority) residues is far greater than that of binding (minority) residues, has a negative impact on the performance of such machine-learning-based predictors. MATERIALS AND METHODS In this study, we aim to relieve the negative impact of class imbalance by Boosting Multiple Granular Support Vector Machines (BGSVM). In BGSVM, each base SVM is trained on a granular training subset consisting of all minority samples and some reasonably selected majority samples. The efficacy of BGSVM for dealing with class imbalance was validated by benchmarking it with several typical imbalance learning algorithms. We further implemented a protein-nucleotide binding site predictor, called BGSVM-NUC, with the BGSVM algorithm. RESULTS Rigorous cross-validation and independent validation tests for five types of proteinnucleotide interactions demonstrated that the proposed BGSVM-NUC achieves promising prediction performance and outperforms several popular sequence-based protein-nucleotide binding site predictors. The BGSVM-NUC web server is freely available at http://csbio.njust.edu.cn/bioinf/BGSVM-NUC/ for academic use.
Collapse
Affiliation(s)
- Yi-Heng Zhu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Hu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yong Qi
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiao-Ning Song
- School of Internet of Things, Jiangnan University, Wuxi 214122, China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
19
|
Arif M, Ahmad S, Ali F, Fang G, Li M, Yu DJ. TargetCPP: accurate prediction of cell-penetrating peptides from optimized multi-scale features using gradient boost decision tree. J Comput Aided Mol Des 2020; 34:841-856. [PMID: 32180124 DOI: 10.1007/s10822-020-00307-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
Cell-penetrating peptides (CPPs) are short length permeable proteins have emerged as drugs delivery tool of therapeutic agents including genetic materials and macromolecules into cells. Recently, CPP has become a hotspot avenue for life science research and paved a new way of disease treatment without harmful impact on cell viability due to nontoxic characteristic. Therefore, the correct identification of CPPs will provide hints for medical applications. Considering the shortcomings of traditional experimental CPPs identification, it is urgently needed to design intelligent predictor for accurate identification of CPPs for the large scale uncharacterized sequences. We develop a novel computational method, called TargetCPP, to discriminate CPPs from Non-CPPs with improved accuracy. In TargetCPP, first the peptide sequences are formulated with four distinct encoding methods i.e., composite protein sequence representation, composition transition and distribution, split amino acid composition, and information theory features. These dominant feature vectors were fused and applied intelligent minimum redundancy and maximum relevancy feature selection method to choose an optimal subset of features. Finally, the predictive model is learned through different classification algorithms on the optimized features. Among these classifiers, gradient boost decision tree algorithm achieved excellent performance throughout the experiments. Notably, the TargetCPP tool attained high prediction Accuracy of 93.54% and 88.28% using jackknife and independent test, respectively. Empirical outcomes prove the superiority and potency of proposed bioinformatics method over state-of-the-art methods. It is highly anticipated that the outcomes of this study will provide a strong background for large scale prediction of CPPs and instructive guidance in clinical therapy and medical applications.
Collapse
Affiliation(s)
- Muhammad Arif
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Saeed Ahmad
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Farman Ali
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ge Fang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Min Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
20
|
Chen CW, Lin MH, Liao CC, Chang HP, Chu YW. iStable 2.0: Predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol J 2020; 18:622-630. [PMID: 32226595 PMCID: PMC7090336 DOI: 10.1016/j.csbj.2020.02.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 11/15/2022] Open
Abstract
Protein mutations can lead to structural changes that affect protein function and result in disease occurrence. In protein engineering, drug design or and optimization industries, mutations are often used to improve protein stability or to change protein properties while maintaining stability. To provide possible candidates for novel protein design, several computational tools for predicting protein stability changes have been developed. Although many prediction tools are available, each tool employs different algorithms and features. This can produce conflicting prediction results that make it difficult for users to decide upon the correct protein design. Therefore, this study proposes an integrated prediction tool, iStable 2.0, which integrates 11 sequence-based and structure-based prediction tools by machine learning and adds protein sequence information as features. Three coding modules are designed for the system, an Online Server Module, a Stand-alone Module and a Sequence Coding Module, to improve the prediction performance of the previous version of the system. The final integrated structure-based classification model has a higher Matthews correlation coefficient than that of the single prediction tool (0.708 vs 0.547, respectively), and the Pearson correlation coefficient of the regression model likewise improves from 0.669 to 0.714. The sequence-based model not only successfully integrates off-the-shelf predictors but also improves the Matthews correlation coefficient of the best single prediction tool by at least 0.161, which is better than the individual structure-based prediction tools. In addition, both the Sequence Coding Module and the Stand-alone Module maintain performance with only a 5% decrease of the Matthews correlation coefficient when the integrated online tools are unavailable. iStable 2.0 is available at http://ncblab.nchu.edu.tw/iStable2.
Collapse
Affiliation(s)
- Chi-Wei Chen
- Department of Computer Science and Engineering, National Chung-Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Meng-Han Lin
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Chi-Chou Liao
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Hsung-Pin Chang
- Department of Computer Science and Engineering, National Chung-Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Yen-Wei Chu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
- Biotechnology Center, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| |
Collapse
|
21
|
Apurva M, Mazumdar H. Predicting structural class for protein sequences of 40% identity based on features of primary and secondary structure using Random Forest algorithm. Comput Biol Chem 2020; 84:107164. [DOI: 10.1016/j.compbiolchem.2019.107164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023]
|
22
|
SDBP-Pred: Prediction of single-stranded and double-stranded DNA-binding proteins by extending consensus sequence and K-segmentation strategies into PSSM. Anal Biochem 2019; 589:113494. [PMID: 31693872 DOI: 10.1016/j.ab.2019.113494] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 11/24/2022]
Abstract
Identification of DNA-binding proteins (DNA-BPs) is a hot issue in protein science due to its key role in various biological processes. These processes are highly concerned with DNA-binding protein types. DNA-BPs are classified into single-stranded DNA-binding proteins (SSBs) and double-stranded DNA-binding proteins (DSBs). SSBs mainly involved in DNA recombination, replication, and repair, while DSBs regulate transcription process, DNA cleavage, and chromosome packaging. In spite of the aforementioned significance, few methods have been proposed for discrimination of SSBs and DSBs. Therefore, more predictors with favorable performance are indispensable. In this work, we present an innovative predictor, called SDBP-Pred with a novel feature descriptor, named consensus sequence-based K-segmentation position-specific scoring matrix (CSKS-PSSM). We encoded the local discriminative features concealed in PSSM via K-segmentation strategy and the global potential features by applying the notion of the consensus sequence. The obtained feature vector then input to support vector machine (SVM) with linear, polynomial and radial base function (RBF) kernels. Our model with SVM-RBF achieved the highest accuracies on three tests namely jackknife, 10-fold, and independent tests, respectively than the recent method. The obtained prediction results illustrate the superlative prediction performance of SDBP-Pred over existing studies in the literature so far.
Collapse
|
23
|
Zhu YH, Hu J, Song XN, Yu DJ. DNAPred: Accurate Identification of DNA-Binding Sites from Protein Sequence by Ensembled Hyperplane-Distance-Based Support Vector Machines. J Chem Inf Model 2019; 59:3057-3071. [PMID: 30943723 DOI: 10.1021/acs.jcim.8b00749] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate identification of protein-DNA binding sites is significant for both understanding protein function and drug design. Machine-learning-based methods have been extensively used for the prediction of protein-DNA binding sites. However, the data imbalance problem, in which the number of nonbinding residues (negative-class samples) is far larger than that of binding residues (positive-class samples), seriously restricts the performance improvements of machine-learning-based predictors. In this work, we designed a two-stage imbalanced learning algorithm, called ensembled hyperplane-distance-based support vector machines (E-HDSVM), to improve the prediction performance of protein-DNA binding sites. The first stage of E-HDSVM designs a new iterative sampling algorithm, called hyperplane-distance-based under-sampling (HD-US), to extract multiple subsets from the original imbalanced data set, each of which is used to train a support vector machine (SVM). Unlike traditional sampling algorithms, HD-US selects samples by calculating the distances between the samples and the separating hyperplane of the SVM. The second stage of E-HDSVM proposes an enhanced AdaBoost (EAdaBoost) algorithm to ensemble multiple trained SVMs. As an enhanced version of the original AdaBoost algorithm, EAdaBoost overcomes the overfitting problem. Stringent cross-validation and independent tests on benchmark data sets demonstrated the superiority of E-HDSVM over several popular imbalanced learning algorithms. Based on the proposed E-HDSVM algorithm, we further implemented a sequence-based protein-DNA binding site predictor, called DNAPred, which is freely available at http://csbio.njust.edu.cn/bioinf/dnapred/ for academic use. The computational experimental results showed that our predictor achieved an average overall accuracy of 91.7% and a Mathew's correlation coefficient of 0.395 on five benchmark data sets and outperformed several state-of-the-art sequence-based protein-DNA binding site predictors.
Collapse
Affiliation(s)
- Yi-Heng Zhu
- School of Computer Science and Engineering , Nanjing University of Science and Technology , Xiaolingwei 200 , Nanjing 210094 , P. R. China
| | - Jun Hu
- College of Information Engineering , Zhejiang University of Technology , Hangzhou 310023 , P. R. China
| | - Xiao-Ning Song
- School of Internet of Things , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , P. R. China
| | - Dong-Jun Yu
- School of Computer Science and Engineering , Nanjing University of Science and Technology , Xiaolingwei 200 , Nanjing 210094 , P. R. China
| |
Collapse
|