1
|
Yuan H, Hong C, Tran NTA, Xu X, Liu N. Leveraging anatomical constraints with uncertainty for pneumothorax segmentation. HEALTH CARE SCIENCE 2024; 3:456-474. [PMID: 39735285 PMCID: PMC11671217 DOI: 10.1002/hcs2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 12/31/2024]
Abstract
Background Pneumothorax is a medical emergency caused by the abnormal accumulation of air in the pleural space-the potential space between the lungs and chest wall. On 2D chest radiographs, pneumothorax occurs within the thoracic cavity and outside of the mediastinum, and we refer to this area as "lung + space." While deep learning (DL) has increasingly been utilized to segment pneumothorax lesions in chest radiographs, many existing DL models employ an end-to-end approach. These models directly map chest radiographs to clinician-annotated lesion areas, often neglecting the vital domain knowledge that pneumothorax is inherently location-sensitive. Methods We propose a novel approach that incorporates the lung + space as a constraint during DL model training for pneumothorax segmentation on 2D chest radiographs. To circumvent the need for additional annotations and to prevent potential label leakage on the target task, our method utilizes external datasets and an auxiliary task of lung segmentation. This approach generates a specific constraint of lung + space for each chest radiograph. Furthermore, we have incorporated a discriminator to eliminate unreliable constraints caused by the domain shift between the auxiliary and target datasets. Results Our results demonstrated considerable improvements, with average performance gains of 4.6%, 3.6%, and 3.3% regarding intersection over union, dice similarity coefficient, and Hausdorff distance. These results were consistent across six baseline models built on three architectures (U-Net, LinkNet, or PSPNet) and two backbones (VGG-11 or MobileOne-S0). We further conducted an ablation study to evaluate the contribution of each component in the proposed method and undertook several robustness studies on hyper-parameter selection to validate the stability of our method. Conclusions The integration of domain knowledge in DL models for medical applications has often been underemphasized. Our research underscores the significance of incorporating medical domain knowledge about the location-specific nature of pneumothorax to enhance DL-based lesion segmentation and further bolster clinicians' trust in DL tools. Beyond pneumothorax, our approach is promising for other thoracic conditions that possess location-relevant characteristics.
Collapse
Affiliation(s)
- Han Yuan
- Centre for Quantitative Medicine, Duke‐NUS Medical SchoolSingapore
| | - Chuan Hong
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | | | - Xinxing Xu
- Institute of High Performance Computing, Agency for Science, Technology and ResearchSingapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke‐NUS Medical SchoolSingapore
- Programme in Health Services and Systems Research, Duke‐NUS Medical SchoolSingapore
- Institute of Data ScienceNational University of SingaporeSingapore
| |
Collapse
|
2
|
Yuan H, Hong C, Jiang PT, Zhao G, Tran NTA, Xu X, Yan YY, Liu N. Clinical domain knowledge-derived template improves post hoc AI explanations in pneumothorax classification. J Biomed Inform 2024; 156:104673. [PMID: 38862083 DOI: 10.1016/j.jbi.2024.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement. METHOD We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM-ACR and ChestX-Det). RESULTS The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the performance of our approach. CONCLUSIONS In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving model explanations. Our approach not only aligns model explanations more closely with clinical insights but also exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel approach to elucidating AI models by integrating clinical domain expertise.
Collapse
Affiliation(s)
- Han Yuan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Chuan Hong
- Department of Biostatistics and Bioinformatics, Duke University, USA
| | | | - Gangming Zhao
- Faculty of Engineering, The University of Hong Kong, China
| | | | - Xinxing Xu
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
| | - Yet Yen Yan
- Department of Radiology, Changi General Hospital, Singapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore; Institute of Data Science, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Rosindo Daher de Barros F, Novais F. da Silva C, de Castro Michelassi G, Brentani H, Nunes FL, Machado-Lima A. Computer aided diagnosis of neurodevelopmental disorders and genetic syndromes based on facial images - A systematic literature review. Heliyon 2023; 9:e20517. [PMID: 37860568 PMCID: PMC10582402 DOI: 10.1016/j.heliyon.2023.e20517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Neurodevelopment disorders can result in facial dysmorphisms. Therefore, the analysis of facial images using image processing and machine learning techniques can help construct systems for diagnosing genetic syndromes and neurodevelopmental disorders. The systems offer faster and cost-effective alternatives for genotyping tests, particularly when dealing with large-scale applications. However, there are still challenges to overcome to ensure the accuracy and reliability of computer-aided diagnosis systems. This article presents a systematic review of such initiatives, including 55 articles. The main aspects used to develop these diagnostic systems were discussed, namely datasets - availability, type of image, size, ethnicities and syndromes - types of facial features, techniques used for normalization, dimensionality reduction and classification, deep learning, as well as a discussion related to the main gaps, challenges and opportunities.
Collapse
Affiliation(s)
- Fábio Rosindo Daher de Barros
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| | - Caio Novais F. da Silva
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| | - Gabriel de Castro Michelassi
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, University of Sao Paulo's School of Medicine (FMUSP), Sao Paulo, 05403-903, Sao Paulo, Brazil
| | - Fátima L.S. Nunes
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| | - Ariane Machado-Lima
- School of Arts, Sciences and Humanities – University of Sao Paulo (USP), Av. Arlindo Bettio, 1000, Sao Paulo, 03828-000, Sao Paulo, Brazil
| |
Collapse
|
4
|
Sugibayashi T, Walston SL, Matsumoto T, Mitsuyama Y, Miki Y, Ueda D. Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:32/168/220259. [PMID: 37286217 DOI: 10.1183/16000617.0259-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/16/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Deep learning (DL), a subset of artificial intelligence (AI), has been applied to pneumothorax diagnosis to aid physician diagnosis, but no meta-analysis has been performed. METHODS A search of multiple electronic databases through September 2022 was performed to identify studies that applied DL for pneumothorax diagnosis using imaging. Meta-analysis via a hierarchical model to calculate the summary area under the curve (AUC) and pooled sensitivity and specificity for both DL and physicians was performed. Risk of bias was assessed using a modified Prediction Model Study Risk of Bias Assessment Tool. RESULTS In 56 of the 63 primary studies, pneumothorax was identified from chest radiography. The total AUC was 0.97 (95% CI 0.96-0.98) for both DL and physicians. The total pooled sensitivity was 84% (95% CI 79-89%) for DL and 85% (95% CI 73-92%) for physicians and the pooled specificity was 96% (95% CI 94-98%) for DL and 98% (95% CI 95-99%) for physicians. More than half of the original studies (57%) had a high risk of bias. CONCLUSIONS Our review found the diagnostic performance of DL models was similar to that of physicians, although the majority of studies had a high risk of bias. Further pneumothorax AI research is needed.
Collapse
Affiliation(s)
- Takahiro Sugibayashi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shannon L Walston
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toshimasa Matsumoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, Osaka, Japan
| | - Yasuhito Mitsuyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Yoon MS, Kwon G, Oh J, Ryu J, Lim J, Kang BK, Lee J, Han DK. Effect of Contrast Level and Image Format on a Deep Learning Algorithm for the Detection of Pneumothorax with Chest Radiography. J Digit Imaging 2023; 36:1237-1247. [PMID: 36698035 PMCID: PMC10287877 DOI: 10.1007/s10278-022-00772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Under the black-box nature in the deep learning model, it is uncertain how the change in contrast level and format affects the performance. We aimed to investigate the effect of contrast level and image format on the effectiveness of deep learning for diagnosing pneumothorax on chest radiographs. We collected 3316 images (1016 pneumothorax and 2300 normal images), and all images were set to the standard contrast level (100%) and stored in the Digital Imaging and Communication in Medicine and Joint Photographic Experts Group (JPEG) formats. Data were randomly separated into 80% of training and 20% of test sets, and the contrast of images in the test set was changed to 5 levels (50%, 75%, 100%, 125%, and 150%). We trained the model to detect pneumothorax using ResNet-50 with 100% level images and tested with 5-level images in the two formats. While comparing the overall performance between each contrast level in the two formats, the area under the receiver-operating characteristic curve (AUC) was significantly different (all p < 0.001) except between 125 and 150% in JPEG format (p = 0.382). When comparing the two formats at same contrast levels, AUC was significantly different (all p < 0.001) except 50% and 100% (p = 0.079 and p = 0.082, respectively). The contrast level and format of medical images could influence the performance of the deep learning model. It is required to train with various contrast levels and formats of image, and further image processing for improvement and maintenance of the performance.
Collapse
Affiliation(s)
- Myeong Seong Yoon
- Department of Emergency Medicine, College of Medicine, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
- Machine Learning Research Center for Medical Data, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
- Department of Radiological Science, Eulji University, 553 Sanseong-daero, Seongnam-si, Gyeonggi Do, 13135, Republic of Korea
| | - Gitaek Kwon
- Department of Computer Science, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
- VUNO, Inc, 479 Gangnam-daero, Seocho-gu, Seoul, 06541, Republic of Korea
| | - Jaehoon Oh
- Department of Emergency Medicine, College of Medicine, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
- Machine Learning Research Center for Medical Data, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Jongbin Ryu
- Department of Software and Computer Engineering, Ajou University, 206 World cup-ro, Suwon-si, Gyeonggi Do, 16499, Republic of Korea.
| | - Jongwoo Lim
- Department of Computer Science, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
- Machine Learning Research Center for Medical Data, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Bo-Kyeong Kang
- Machine Learning Research Center for Medical Data, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
- Department of Radiology, College of Medicine, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Juncheol Lee
- Department of Emergency Medicine, College of Medicine, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Dong-Kyoon Han
- Department of Radiological Science, Eulji University, 553 Sanseong-daero, Seongnam-si, Gyeonggi Do, 13135, Republic of Korea
| |
Collapse
|
6
|
Kumar VD, Rajesh P, Geman O, Craciun MD, Arif M, Filip R. “Quo Vadis Diagnosis”: Application of Informatics in Early Detection of Pneumothorax. Diagnostics (Basel) 2023; 13:diagnostics13071305. [PMID: 37046523 PMCID: PMC10093601 DOI: 10.3390/diagnostics13071305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
A pneumothorax is a condition that occurs in the lung region when air enters the pleural space—the area between the lung and chest wall—causing the lung to collapse and making it difficult to breathe. This can happen spontaneously or as a result of an injury. The symptoms of a pneumothorax may include chest pain, shortness of breath, and rapid breathing. Although chest X-rays are commonly used to detect a pneumothorax, locating the affected area visually in X-ray images can be time-consuming and prone to errors. Existing computer technology for detecting this disease from X-rays is limited by three major issues, including class disparity, which causes overfitting, difficulty in detecting dark portions of the images, and vanishing gradient. To address these issues, we propose an ensemble deep learning model called PneumoNet, which uses synthetic images from data augmentation to address the class disparity issue and a segmentation system to identify dark areas. Finally, the issue of the vanishing gradient, which becomes very small during back propagation, can be addressed by hyperparameter optimization techniques that prevent the model from slowly converging and poorly performing. Our model achieved an accuracy of 98.41% on the Society for Imaging Informatics in Medicine pneumothorax dataset, outperforming other deep learning models and reducing the computation complexities in detecting the disease.
Collapse
Affiliation(s)
- V. Dhilip Kumar
- School of Computing, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India; (V.D.K.); (P.R.)
| | - P. Rajesh
- School of Computing, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India; (V.D.K.); (P.R.)
| | - Oana Geman
- Department of Computers, Electronics and Automation, Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- Correspondence: (O.G.); (M.D.C.)
| | - Maria Daniela Craciun
- Interdisciplinary Research Centre in Motricity Sciences and Human Health, Ştefan cel Mare University of Suceava, 720229 Suceava, Romania
- Correspondence: (O.G.); (M.D.C.)
| | - Muhammad Arif
- Department of Computer Science, Superior University, Lahore 54000, Pakistan;
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Suceava Emergency County Hospital, 720224 Suceava, Romania
| |
Collapse
|
7
|
Ullah Z, Usman M, Latif S, Gwak J. Densely attention mechanism based network for COVID-19 detection in chest X-rays. Sci Rep 2023; 13:261. [PMID: 36609667 PMCID: PMC9816547 DOI: 10.1038/s41598-022-27266-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Automatic COVID-19 detection using chest X-ray (CXR) can play a vital part in large-scale screening and epidemic control. However, the radiographic features of CXR have different composite appearances, for instance, diffuse reticular-nodular opacities and widespread ground-glass opacities. This makes the automatic recognition of COVID-19 using CXR imaging a challenging task. To overcome this issue, we propose a densely attention mechanism-based network (DAM-Net) for COVID-19 detection in CXR. DAM-Net adaptively extracts spatial features of COVID-19 from the infected regions with various appearances and scales. Our proposed DAM-Net is composed of dense layers, channel attention layers, adaptive downsampling layer, and label smoothing regularization loss function. Dense layers extract the spatial features and the channel attention approach adaptively builds up the weights of major feature channels and suppresses the redundant feature representations. We use the cross-entropy loss function based on label smoothing to limit the effect of interclass similarity upon feature representations. The network is trained and tested on the largest publicly available dataset, i.e., COVIDx, consisting of 17,342 CXRs. Experimental results demonstrate that the proposed approach obtains state-of-the-art results for COVID-19 classification with an accuracy of 97.22%, a sensitivity of 96.87%, a specificity of 99.12%, and a precision of 95.54%.
Collapse
Affiliation(s)
- Zahid Ullah
- Department of Software, Korea National University of Transportation, Chungju, 27469, South Korea
| | - Muhammad Usman
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Siddique Latif
- Faculty of Health and Computing, University of Southern Queensland, Toowoomba, QLD, 4300, Australia
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju, 27469, South Korea.
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, South Korea.
- Department of AI Robotics Engineering, Korea National University of Transportation, Chungju, 27469, South Korea.
- Department of IT. Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, South Korea.
| |
Collapse
|
8
|
Garcea F, Serra A, Lamberti F, Morra L. Data augmentation for medical imaging: A systematic literature review. Comput Biol Med 2023; 152:106391. [PMID: 36549032 DOI: 10.1016/j.compbiomed.2022.106391] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Recent advances in Deep Learning have largely benefited from larger and more diverse training sets. However, collecting large datasets for medical imaging is still a challenge due to privacy concerns and labeling costs. Data augmentation makes it possible to greatly expand the amount and variety of data available for training without actually collecting new samples. Data augmentation techniques range from simple yet surprisingly effective transformations such as cropping, padding, and flipping, to complex generative models. Depending on the nature of the input and the visual task, different data augmentation strategies are likely to perform differently. For this reason, it is conceivable that medical imaging requires specific augmentation strategies that generate plausible data samples and enable effective regularization of deep neural networks. Data augmentation can also be used to augment specific classes that are underrepresented in the training set, e.g., to generate artificial lesions. The goal of this systematic literature review is to investigate which data augmentation strategies are used in the medical domain and how they affect the performance of clinical tasks such as classification, segmentation, and lesion detection. To this end, a comprehensive analysis of more than 300 articles published in recent years (2018-2022) was conducted. The results highlight the effectiveness of data augmentation across organs, modalities, tasks, and dataset sizes, and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Fabio Garcea
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Alessio Serra
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Fabrizio Lamberti
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Lia Morra
- Dipartimento di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, Torino, 10129, Italy.
| |
Collapse
|
9
|
Zhang Y, Liu M, Hu S, Shen Y, Lan J, Jiang B, de Bock GH, Vliegenthart R, Chen X, Xie X. Development and multicenter validation of chest X-ray radiography interpretations based on natural language processing. COMMUNICATIONS MEDICINE 2021; 1:43. [PMID: 35602222 PMCID: PMC9053275 DOI: 10.1038/s43856-021-00043-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background Artificial intelligence can assist in interpreting chest X-ray radiography (CXR) data, but large datasets require efficient image annotation. The purpose of this study is to extract CXR labels from diagnostic reports based on natural language processing, train convolutional neural networks (CNNs), and evaluate the classification performance of CNN using CXR data from multiple centers Methods We collected the CXR images and corresponding radiology reports of 74,082 subjects as the training dataset. The linguistic entities and relationships from unstructured radiology reports were extracted by the bidirectional encoder representations from transformers (BERT) model, and a knowledge graph was constructed to represent the association between image labels of abnormal signs and the report text of CXR. Then, a 25-label classification system were built to train and test the CNN models with weakly supervised labeling. Results In three external test cohorts of 5,996 symptomatic patients, 2,130 screening examinees, and 1,804 community clinic patients, the mean AUC of identifying 25 abnormal signs by CNN reaches 0.866 ± 0.110, 0.891 ± 0.147, and 0.796 ± 0.157, respectively. In symptomatic patients, CNN shows no significant difference with local radiologists in identifying 21 signs (p > 0.05), but is poorer for 4 signs (p < 0.05). In screening examinees, CNN shows no significant difference for 17 signs (p > 0.05), but is poorer at classifying nodules (p = 0.013). In community clinic patients, CNN shows no significant difference for 12 signs (p > 0.05), but performs better for 6 signs (p < 0.001). Conclusion We construct and validate an effective CXR interpretation system based on natural language processing. Chest X-rays are accompanied by a report from the radiologist, which contains valuable diagnostic information in text format. Extracting and interpreting information from these reports, such as keywords, is time-consuming, but artificial intelligence (AI) can help with this. Here, we use a type of AI known as natural language processing to extract information about abnormal signs seen on chest X-rays from the corresponding report. We develop and test natural language processing models using data from multiple hospitals and clinics, and show that our models achieve similar performance to interpretation from the radiologists themselves. Our findings suggest that AI might help radiologists to speed up interpretation of chest X-ray reports, which could be useful not only in patient triage and diagnosis but also cataloguing and searching of radiology datasets. Zhang et al. develop a natural language processing approach, based on the BERT model, to extract linguistic information from chest X-ray radiography reports. The authors establish a 25-label classification system for abnormal findings described in the reports and validate their model using data from multiple sites.
Collapse
|
10
|
Liu S, Zhang B, Liu Y, Han A, Shi H, Guan T, He Y. Unpaired Stain Transfer Using Pathology-Consistent Constrained Generative Adversarial Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1977-1989. [PMID: 33784619 DOI: 10.1109/tmi.2021.3069874] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pathological examination is the gold standard for the diagnosis of cancer. Common pathological examinations include hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC). In some cases, it is hard to make accurate diagnoses of cancer by referring only to H&E staining images. Whereas, the IHC examination can further provide enough evidence for the diagnosis process. Hence, the generation of virtual IHC images from H&E-stained images will be a good solution for current IHC examination hard accessibility issue, especially for some low-resource regions. However, existing approaches have limitations in microscopic structural preservation and the consistency of pathology properties. In addition, pixel-level paired data is hard available. In our work, we propose a novel adversarial learning method for effective Ki-67-stained image generation from corresponding H&E-stained image. Our method takes fully advantage of structural similarity constraint and skip connection to improve structural details preservation; and pathology consistency constraint and pathological representation network are first proposed to enforce the generated and source images hold the same pathological properties in different staining domains. We empirically demonstrate the effectiveness of our approach on two different unpaired histopathological datasets. Extensive experiments indicate the superior performance of our method that surpasses the state-of-the-art approaches by a significant margin. In addition, our approach also achieves a stable and good performance on unbalanced datasets, which shows our method has strong robustness. We believe that our method has significant potential in clinical virtual staining and advance the progress of computer-aided multi-staining histology image analysis.
Collapse
|
11
|
Moses DA. Deep learning applied to automatic disease detection using chest X-rays. J Med Imaging Radiat Oncol 2021; 65:498-517. [PMID: 34231311 DOI: 10.1111/1754-9485.13273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
Deep learning (DL) has shown rapid advancement and considerable promise when applied to the automatic detection of diseases using CXRs. This is important given the widespread use of CXRs across the world in diagnosing significant pathologies, and the lack of trained radiologists to report them. This review article introduces the basic concepts of DL as applied to CXR image analysis including basic deep neural network (DNN) structure, the use of transfer learning and the application of data augmentation. It then reviews the current literature on how DNN models have been applied to the detection of common CXR abnormalities (e.g. lung nodules, pneumonia, tuberculosis and pneumothorax) over the last few years. This includes DL approaches employed for the classification of multiple different diseases (multi-class classification). Performance of different techniques and models and their comparison with human observers are presented. Some of the challenges facing DNN models, including their future implementation and relationships to radiologists, are also discussed.
Collapse
Affiliation(s)
- Daniel A Moses
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Department of Medical Imaging, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Detection of the location of pneumothorax in chest X-rays using small artificial neural networks and a simple training process. Sci Rep 2021; 11:13054. [PMID: 34158562 PMCID: PMC8219779 DOI: 10.1038/s41598-021-92523-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to evaluate the diagnostic performance achieved by using fully-connected small artificial neural networks (ANNs) and a simple training process, the Kim-Monte Carlo algorithm, to detect the location of pneumothorax in chest X-rays. A total of 1,000 chest X-ray images with pneumothorax were taken randomly from NIH (the National Institutes of Health) public image database and used as the training and test sets. Each X-ray image with pneumothorax was divided into 49 boxes for pneumothorax localization. For each of the boxes in the chest X-ray images contained in the test set, the area under the receiver operating characteristic (ROC) curve (AUC) was 0.882, and the sensitivity and specificity were 80.6% and 83.0%, respectively. In addition, a common currently used deep-learning method for image recognition, the convolution neural network (CNN), was also applied to the same dataset for comparison purposes. The performance of the fully-connected small ANN was better than that of the CNN. Regarding the diagnostic performances of the CNN with different activation functions, the CNN with a sigmoid activation function for fully-connected hidden nodes was better than the CNN with the rectified linear unit (RELU) activation function. This study showed that our approach can accurately detect the location of pneumothorax in chest X-rays, significantly reduce the time delay incurred when diagnosing urgent diseases such as pneumothorax, and increase the effectiveness of clinical practice and patient care.
Collapse
|
13
|
Li J, Wang Y, Wang S, Wang J, Liu J, Jin Q, Sun L. Multiscale Attention Guided Network for COVID-19 Diagnosis Using Chest X-Ray Images. IEEE J Biomed Health Inform 2021; 25:1336-1346. [PMID: 33560995 PMCID: PMC8545167 DOI: 10.1109/jbhi.2021.3058293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is one of the most destructive pandemic after millennium, forcing the world to tackle a health crisis. Automated lung infections classification using chest X-ray (CXR) images could strengthen diagnostic capability when handling COVID-19. However, classifying COVID-19 from pneumonia cases using CXR image is a difficult task because of shared spatial characteristics, high feature variation and contrast diversity between cases. Moreover, massive data collection is impractical for a newly emerged disease, which limited the performance of data thirsty deep learning models. To address these challenges, Multiscale Attention Guided deep network with Soft Distance regularization (MAG-SD) is proposed to automatically classify COVID-19 from pneumonia CXR images. In MAG-SD, MA-Net is used to produce prediction vector and attention from multiscale feature maps. To improve the robustness of trained model and relieve the shortage of training data, attention guided augmentations along with a soft distance regularization are posed, which aims at generating meaningful augmentations and reduce noise. Our multiscale attention model achieves better classification performance on our pneumonia CXR image dataset. Plentiful experiments are proposed for MAG-SD which demonstrates its unique advantage in pneumonia classification over cutting-edge models. The code is available at https://github.com/JasonLeeGHub/MAG-SD.
Collapse
|
14
|
Lv D, Wang Y, Wang S, Zhang Q, Qi W, Li Y, Sun L. A Cascade-SEME network for COVID-19 detection in chest x-ray images. Med Phys 2021; 48:2337-2353. [PMID: 33778966 PMCID: PMC8250185 DOI: 10.1002/mp.14711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The worldwide spread of the SARS-CoV-2 virus poses unprecedented challenges to medical resources and infection prevention and control measures around the world. In this case, a rapid and effective detection method for COVID-19 can not only relieve the pressure of the medical system but find and isolate patients in time, to a certain extent, slow down the development of the epidemic. In this paper, we propose a method that can quickly and accurately diagnose whether pneumonia is viral pneumonia, and classify viral pneumonia in a fine-grained way to diagnose COVID-19. METHODS We proposed a Cascade Squeeze-Excitation and Moment Exchange (Cascade-SEME) framework that can effectively detect COVID-19 cases by evaluating the chest x-ray images, where SE is the structure we designed in the network which has attention mechanism, and ME is a method for image enhancement from feature dimension. The framework integrates a model for a coarse level detection of virus cases among other forms of lung infection, and a model for fine-grained categorisation of pneumonia types identifying COVID-19 cases. In addition, a Regional Learning approach is proposed to mitigate the impact of non-lesion features on network training. The network output is also visualised, highlighting the likely areas of lesion, to assist experts' assessment and diagnosis of COVID-19. RESULTS Three datasets were used: a set of Chest x-ray Images for Classification with bacterial pneumonia, viral pneumonia and normal chest x-rays, a COVID chest x-ray dataset with COVID-19, and a Lung Segmentation dataset containing 1000 chest x-rays with masks in the lung region. We evaluated all the models on the test set. The results shows the proposed SEME structure significantly improves the performance of the models: in the task of pneumonia infection type diagnosis, the sensitivity, specificity, accuracy and F1 score of ResNet50 with SEME structure are significantly improved in each category, and the accuracy and AUC of the whole test set are also enhanced; in the detection task of COVID-19, the evaluation results shows that when SEME structure was added to the task, the sensitivities, specificities, accuracy and F1 scores of ResNet50 and DenseNet169 are improved. Although the sensitivities and specificities are not significantly promoted, SEME well balanced these two significant indicators. Regional learning also plays an important role. Experiments show that Regional Learning can effectively correct the impact of non-lesion features on the network, which can be seen in the Grad-CAM method. CONCLUSIONS Experiments show that after the application of SEME structure in the network, the performance of SEME-ResNet50 and SEME-DenseNet169 in both two datasets show a clear enhancement. And the proposed regional learning method effectively directs the network's attention to focus on relevant pathological regions in the lung radiograph, ensuring the performance of the proposed framework even when a small training set is used. The visual interpretation step using Grad-CAM finds that the region of attention on radiographs of different types of pneumonia are located in different regions of the lungs.
Collapse
Affiliation(s)
- Dailin Lv
- The Key Lab of RF Circuits and Systems of Ministry of Education, Microelectronics CAD Center, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yaqi Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Shuai Wang
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, National Institutes of Health Clinical Center, Bethesda, MD, 20892, USA
| | - Qianni Zhang
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS, UK
| | - Wuteng Qi
- The Key Lab of RF Circuits and Systems of Ministry of Education, Microelectronics CAD Center, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yunxiang Li
- The Key Lab of RF Circuits and Systems of Ministry of Education, Microelectronics CAD Center, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lingling Sun
- The Key Lab of RF Circuits and Systems of Ministry of Education, Microelectronics CAD Center, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
15
|
Datta S, Si Y, Rodriguez L, Shooshan SE, Demner-Fushman D, Roberts K. Understanding spatial language in radiology: Representation framework, annotation, and spatial relation extraction from chest X-ray reports using deep learning. J Biomed Inform 2020; 108:103473. [PMID: 32562898 DOI: 10.1016/j.jbi.2020.103473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
Radiology reports contain a radiologist's interpretations of images, and these images frequently describe spatial relations. Important radiographic findings are mostly described in reference to an anatomical location through spatial prepositions. Such spatial relationships are also linked to various differential diagnoses and often described through uncertainty phrases. Structured representation of this clinically significant spatial information has the potential to be used in a variety of downstream clinical informatics applications. Our focus is to extract these spatial representations from the reports. For this, we first define a representation framework based on the Spatial Role Labeling (SpRL) scheme, which we refer to as Rad-SpRL. In Rad-SpRL, common radiological entities tied to spatial relations are encoded through four spatial roles: Trajector, Landmark, Diagnosis, and Hedge, all identified in relation to a spatial preposition (or Spatial Indicator). We annotated a total of 2,000 chest X-ray reports following Rad-SpRL. We then propose a deep learning-based natural language processing (NLP) method involving word and character-level encodings to first extract the Spatial Indicators followed by identifying the corresponding spatial roles. Specifically, we use a bidirectional long short-term memory (Bi-LSTM) conditional random field (CRF) neural network as the baseline model. Additionally, we incorporate contextualized word representations from pre-trained language models (BERT and XLNet) for extracting the spatial information. We evaluate both gold and predicted Spatial Indicators to extract the four types of spatial roles. The results are promising, with the highest average F1 measure for Spatial Indicator extraction being 91.29 (XLNet); the highest average overall F1 measure considering all the four spatial roles being 92.9 using gold Indicators (XLNet); and 85.6 using predicted Indicators (BERT pre-trained on MIMIC notes). The corpus is available in Mendeley at http://dx.doi.org/10.17632/yhb26hfz8n.1 and https://github.com/krobertslab/datasets/blob/master/Rad-SpRL.xml.
Collapse
Affiliation(s)
- Surabhi Datta
- School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, United States.
| | - Yuqi Si
- School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, United States
| | - Laritza Rodriguez
- National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Sonya E Shooshan
- National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Dina Demner-Fushman
- National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Kirk Roberts
- School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, United States.
| |
Collapse
|