1
|
Wei X, Zhu T, Yip HF, Fu X, Jiang D, Deng Y, Lu A, Cao D. Predicting novel targets with Bayesian machine learning by integrating multiple biological signatures. Chem Sci 2024:d4sc03580a. [PMID: 39170720 PMCID: PMC11333953 DOI: 10.1039/d4sc03580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
The identification of targets for candidate molecules is a pivotal stride in the drug development journey, encompassing lead discovery, drug repurposing, and the scrutiny of potential off-target or side effects. Consequently, enhancing the precision of target prediction has significant implications. Moreover, current target prediction methods primarily rely on the principle of ligand-based chemical similarity, lacking the capture of novel compound-target relationships based on ligand high-level characterization similarity. Therefore, in this context, we introduce a pioneering algorithm known as the Fused Multiple Biological Signatures (FMBS) strategy. This approach leverages a Bayesian framework to amalgamate 25 predictable biological space characterizations of molecules to predict novel targets through scaffold hopping, thereby improving target prediction accuracy and providing a versatile tool for a wide range of small-molecule target prediction. When juxtaposed with alternative target prediction methods, FMBS showcases notable efficacy, outperforming traditional descriptors. Through an analysis of scaffold hopping cases, we elucidate how FMBS attains heightened accuracy by assimilating comprehensive and complementary high-dimensional signatures, thereby underscoring its potential in unearthing novel compound-target relationships. The findings underscore that our approach adeptly pinpoints promising candidate targets, thereby expediting drug mechanism exploration through the integration of multiple high-level characterizations.
Collapse
Affiliation(s)
- Xiao Wei
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
| | - Tingfei Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| | - Hiu Fung Yip
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| | - Xiangzheng Fu
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| | - Dejun Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
| | - Youchao Deng
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| |
Collapse
|
2
|
Luo H, Zhu C, Wang J, Zhang G, Luo J, Yan C. Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network. Front Pharmacol 2024; 15:1337764. [PMID: 38384286 PMCID: PMC10879308 DOI: 10.3389/fphar.2024.1337764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Accurately identifying novel indications for drugs is crucial in drug research and discovery. Traditional drug discovery is costly and time-consuming. Computational drug repositioning can provide an effective strategy for discovering potential drug-disease associations. However, the known experimentally verified drug-disease associations is relatively sparse, which may affect the prediction performance of the computational drug repositioning methods. Moreover, while the existing drug-disease prediction method based on metric learning algorithm has achieved better performance, it simply learns features of drugs and diseases only from the drug-centered perspective, and cannot comprehensively model the latent features of drugs and diseases. In this study, we propose a novel drug repositioning method named RSML-GCN, which applies graph convolutional network and reinforcement symmetric metric learning to predict potential drug-disease associations. RSML-GCN first constructs a drug-disease heterogeneous network by integrating the association and feature information of drugs and diseases. Then, the graph convolutional network (GCN) is applied to complement the drug-disease association information. Finally, reinforcement symmetric metric learning with adaptive margin is designed to learn the latent vector representation of drugs and diseases. Based on the learned latent vector representation, the novel drug-disease associations can be identified by the metric function. Comprehensive experiments on benchmark datasets demonstrated the superior prediction performance of RSML-GCN for drug repositioning.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Chunli Zhu
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Junwei Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Cüvitoğlu A, Isik Z. Network neighborhood operates as a drug repositioning method for cancer treatment. PeerJ 2023; 11:e15624. [PMID: 37456868 PMCID: PMC10340098 DOI: 10.7717/peerj.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Computational drug repositioning approaches are important, as they cost less compared to the traditional drug development processes. This study proposes a novel network-based drug repositioning approach, which computes similarities between disease-causing genes and drug-affected genes in a network topology to suggest candidate drugs with highest similarity scores. This new method aims to identify better treatment options by integrating systems biology approaches. It uses a protein-protein interaction network that is the main topology to compute a similarity score between candidate drugs and disease-causing genes. The disease-causing genes were mapped on this network structure. Transcriptome profiles of drug candidates were taken from the LINCS project and mapped individually on the network structure. The similarity of these two networks was calculated by different network neighborhood metrics, including Adamic-Adar, PageRank and neighborhood scoring. The proposed approach identifies the best candidates by choosing the drugs with significant similarity scores. The method was experimented on melanoma, colorectal, and prostate cancers. Several candidate drugs were predicted by applying AUC values of 0.6 or higher. Some of the predictions were approved by clinical phase trials or other in-vivo studies found in literature. The proposed drug repositioning approach would suggest better treatment options with integration of functional information between genes and transcriptome level effects of drug perturbations and diseases.
Collapse
Affiliation(s)
- Ali Cüvitoğlu
- The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir, Turkiye
| | - Zerrin Isik
- Computer Engineering Department, Engineering Faculty, Dokuz Eylül University, Izmir, Turkiye
| |
Collapse
|
4
|
Zhao Q, Yang M, Cheng Z, Li Y, Wang J. Biomedical Data and Deep Learning Computational Models for Predicting Compound-Protein Relations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2092-2110. [PMID: 33769935 DOI: 10.1109/tcbb.2021.3069040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification of compound-protein relations (CPRs), which includes compound-protein interactions (CPIs) and compound-protein affinities (CPAs), is critical to drug development. A common method for compound-protein relation identification is the use of in vitro screening experiments. However, the number of compounds and proteins is massive, and in vitro screening experiments are labor-intensive, expensive, and time-consuming with high failure rates. Researchers have developed a computational field called virtual screening (VS) to aid experimental drug development. These methods utilize experimentally validated biological interaction information to generate datasets and use the physicochemical and structural properties of compounds and target proteins as input information to train computational prediction models. At present, deep learning has been widely used in computer vision and natural language processing and has experienced epoch-making progress. At the same time, deep learning has also been used in the field of biomedicine widely, and the prediction of CPRs based on deep learning has developed rapidly and has achieved good results. The purpose of this study is to investigate and discuss the latest applications of deep learning techniques in CPR prediction. First, we describe the datasets and feature engineering (i.e., compound and protein representations and descriptors) commonly used in CPR prediction methods. Then, we review and classify recent deep learning approaches in CPR prediction. Next, a comprehensive comparison is performed to demonstrate the prediction performance of representative methods on classical datasets. Finally, we discuss the current state of the field, including the existing challenges and our proposed future directions. We believe that this investigation will provide sufficient references and insight for researchers to understand and develop new deep learning methods to enhance CPR predictions.
Collapse
|
5
|
Yan C, Duan G, Zhang Y, Wu FX, Pan Y, Wang J. Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:168-179. [PMID: 32310779 DOI: 10.1109/tcbb.2020.2988018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A drug-drug interaction (DDI) is defined as an association between two drugs where the pharmacological effects of a drug are influenced by another drug. Positive DDIs can usually improve the therapeutic effects of patients, but negative DDIs cause the major cause of adverse drug reactions and even result in the drug withdrawal from the market and the patient death. Therefore, identifying DDIs has become a key component of the drug development and disease treatment. In this study, we propose a novel method to predict DDIs based on the integrated similarity and semi-supervised learning (DDI-IS-SL). DDI-IS-SL integrates the drug chemical, biological and phenotype data to calculate the feature similarity of drugs with the cosine similarity method. The Gaussian Interaction Profile kernel similarity of drugs is also calculated based on known DDIs. A semi-supervised learning method (the Regularized Least Squares classifier) is used to calculate the interaction possibility scores of drug-drug pairs. In terms of the 5-fold cross validation, 10-fold cross validation and de novo drug validation, DDI-IS-SL can achieve the better prediction performance than other comparative methods. In addition, the average computation time of DDI-IS-SL is shorter than that of other comparative methods. Finally, case studies further demonstrate the performance of DDI-IS-SL in practical applications.
Collapse
|
6
|
Huang L, Luo H, Li S, Wu FX, Wang J. Drug-drug similarity measure and its applications. Brief Bioinform 2020; 22:5956929. [PMID: 33152756 DOI: 10.1093/bib/bbaa265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Drug similarities play an important role in modern biology and medicine, as they help scientists gain deep insights into drugs' therapeutic mechanisms and conduct wet labs that may significantly improve the efficiency of drug research and development. Nowadays, a number of drug-related databases have been constructed, with which many methods have been developed for computing similarities between drugs for studying associations between drugs, human diseases, proteins (drug targets) and more. In this review, firstly, we briefly introduce the publicly available drug-related databases. Secondly, based on different drug features, interaction relationships and multimodal data, we summarize similarity calculation methods in details. Then, we discuss the applications of drug similarities in various biological and medical areas. Finally, we evaluate drug similarity calculation methods with common evaluation metrics to illustrate the important roles of drug similarity measures on different applications.
Collapse
Affiliation(s)
- Lan Huang
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, China
| | - Huimin Luo
- School of Computer and Information Engineering at Henan University, Kaifeng, China
| | - Suning Li
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Fang-Xiang Wu
- College of Engineering and Department of Computer Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Jianxin Wang
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, China
| |
Collapse
|
7
|
Quan Q, Wang J, Liu L. An Effective Convolutional Neural Network for Classifying Red Blood Cells in Malaria Diseases. Interdiscip Sci 2020; 12:217-225. [PMID: 32394271 DOI: 10.1007/s12539-020-00367-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022]
Abstract
Malaria is one of the epidemics that can cause human death. Accurate and rapid diagnosis of malaria is important for treatment. Due to the limited number of data and human factors, the prediction performance and reliability of traditional classification methods are often affected. In this study, we propose an efficient and novel classification network named Attentive Dense Circular Net (ADCN) which based on Convolutional Neural Networks (CNN). The ADCN is inspired by the ideas of residual and dense networks and combines with the attention mechanism. We train and evaluate our proposed model on a publicly available red blood cells (RBC) dataset and compare ADCN with several well-established CNN models. Compared to other best performing CNN model in our experiments, ADCN shows superiority in all performance criteria such as accuracy (97.47% vs 94.61%), sensitivity (97.86% vs 95.20%) and specificity (97.07% vs 92.87%). Finally, we discuss the obtained results and analyze the difficulties of RBCs classification.
Collapse
Affiliation(s)
- Quan Quan
- School of Computer Science and Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Liangliang Liu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, People's Republic of China. .,Department of Network Center, Pingdingshan University, Pingdingshan, 467000, People's Republic of China.
| |
Collapse
|
8
|
Jiang H, Yang M, Chen X, Li M, Li Y, Wang J. miRTMC: A miRNA Target Prediction Method Based on Matrix Completion Algorithm. IEEE J Biomed Health Inform 2020; 24:3630-3641. [PMID: 32287029 DOI: 10.1109/jbhi.2020.2987034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
microRNAs (miRNAs) are small non-coding RNAs which modulate the stability of gene targets and their rates of translation into proteins at transcriptional level and post-transcriptional level. miRNA dysfunctions can lead to human diseases because of dysregulation of their targets. Correct miRNA target prediction will lead to better understanding of the mechanisms of human diseases and provide hints on curing them. In recent years, computational miRNA target prediction methods have been proposed according to the interaction rules between miRNAs and targets. However, these methods suffer from high false positive rates due to the complicated relationship between miRNAs and their targets. The rapidly growing number of experimentally validated miRNA targets enables predicting miRNA targets with high precision via accurate data analysis. Taking advantage of these known miRNA targets, a novel recommendation system model (miRTMC) for miRNA target prediction is established using a new matrix completion algorithm. In miRTMC, a heterogeneous network is constructed by integrating the miRNA similarity network, the gene similarity network, and the miRNA-gene interaction network. Our assumption is that the latent factors determining whether a gene is the target of miRNA or not are highly correlated, i.e., the adjacency matrix of the heterogeneous network is low-rank, which is then completed by using a nuclear norm regularized linear least squares model under non-negative constraints. Alternating direction method of multipliers (ADMM) is adopted to numerically solve the matrix completion problem. Our results show that miRTMC outperforms the competing methods in terms of various evaluation metrics. Our software package is available at https://github.com/hjiangcsu/miRTMC.
Collapse
|
9
|
Yan C, Wu FX, Wang J, Duan G. PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences. BMC Bioinformatics 2020; 21:111. [PMID: 32183740 PMCID: PMC7079416 DOI: 10.1186/s12859-020-3426-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a kind of small noncoding RNA molecules that are direct posttranscriptional regulations of mRNA targets. Studies have indicated that miRNAs play key roles in complex diseases by taking part in many biological processes, such as cell growth, cell death and so on. Therefore, in order to improve the effectiveness of disease diagnosis and treatment, it is appealing to develop advanced computational methods for predicting the essentiality of miRNAs. Result In this study, we propose a method (PESM) to predict the miRNA essentiality based on gradient boosting machines and miRNA sequences. First, PESM extracts the sequence and structural features of miRNAs. Then it uses gradient boosting machines to predict the essentiality of miRNAs. We conduct the 5-fold cross-validation to assess the prediction performance of our method. The area under the receiver operating characteristic curve (AUC), F-measure and accuracy (ACC) are used as the metrics to evaluate the prediction performance. We also compare PESM with other three competing methods which include miES, Gaussian Naive Bayes and Support Vector Machine. Conclusion The results of experiments show that PESM achieves the better prediction performance (AUC: 0.9117, F-measure: 0.8572, ACC: 0.8516) than other three computing methods. In addition, the relative importance of all features also further shows that newly added features can be helpful to improve the prediction performance of methods.
Collapse
Affiliation(s)
- Cheng Yan
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.,School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000, China
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9, Canada
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China
| | - Guihua Duan
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.
| |
Collapse
|
10
|
Yan C, Duan G, Pan Y, Wu FX, Wang J. DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels. BMC Bioinformatics 2019; 20:538. [PMID: 31874609 PMCID: PMC6929542 DOI: 10.1186/s12859-019-3093-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A drug-drug interaction (DDI) is defined as a drug effect modified by another drug, which is very common in treating complex diseases such as cancer. Many studies have evidenced that some DDIs could be an increase or a decrease of the drug effect. However, the adverse DDIs maybe result in severe morbidity and even morality of patients, which also cause some drugs to withdraw from the market. As the multi-drug treatment becomes more and more common, identifying the potential DDIs has become the key issue in drug development and disease treatment. However, traditional biological experimental methods, including in vitro and vivo, are very time-consuming and expensive to validate new DDIs. With the development of high-throughput sequencing technology, many pharmaceutical studies and various bioinformatics data provide unprecedented opportunities to study DDIs. RESULT In this study, we propose a method to predict new DDIs, namely DDIGIP, which is based on Gaussian Interaction Profile (GIP) kernel on the drug-drug interaction profiles and the Regularized Least Squares (RLS) classifier. In addition, we also use the k-nearest neighbors (KNN) to calculate the initial relational score in the presence of new drugs via the chemical, biological, phenotypic data of drugs. We compare the prediction performance of DDIGIP with other competing methods via the 5-fold cross validation, 10-cross validation and de novo drug validation. CONLUSION In 5-fold cross validation and 10-cross validation, DDRGIP method achieves the area under the ROC curve (AUC) of 0.9600 and 0.9636 which are better than state-of-the-art method (L1 Classifier ensemble method) of 0.9570 and 0.9599. Furthermore, for new drugs, the AUC value of DDIGIP in de novo drug validation reaches 0.9262 which also outperforms the other state-of-the-art method (Weighted average ensemble method) of 0.9073. Case studies and these results demonstrate that DDRGIP is an effective method to predict DDIs while being beneficial to drug development and disease treatment.
Collapse
Affiliation(s)
- Cheng Yan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
- School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000 China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| | - Yi Pan
- Department of Computer Science, Georgia State University, Atlanta, GA30302 USA
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9 Canada
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| |
Collapse
|