1
|
Huang Y, Huang S, Zhang XF, Ou-Yang L, Liu C. NJGCG: A node-based joint Gaussian copula graphical model for gene networks inference across multiple states. Comput Struct Biotechnol J 2024; 23:3199-3210. [PMID: 39263209 PMCID: PMC11388165 DOI: 10.1016/j.csbj.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Inferring the interactions between genes is essential for understanding the mechanisms underlying biological processes. Gene networks will change along with the change of environment and state. The accumulation of gene expression data from multiple states makes it possible to estimate the gene networks in various states based on computational methods. However, most existing gene network inference methods focus on estimating a gene network from a single state, ignoring the similarities between networks in different but related states. Moreover, in addition to individual edges, similarities and differences between different networks may also be driven by hub genes. But existing network inference methods rarely consider hub genes, which affects the accuracy of network estimation. In this paper, we propose a novel node-based joint Gaussian copula graphical (NJGCG) model to infer multiple gene networks from gene expression data containing heterogeneous samples jointly. Our model can handle various gene expression data with missing values. Furthermore, a tree-structured group lasso penalty is designed to identify the common and specific hub genes in different gene networks. Simulation studies show that our proposed method outperforms other compared methods in all cases. We also apply NJGCG to infer the gene networks for different stages of differentiation in mouse embryonic stem cells and different subtypes of breast cancer, and explore changes in gene networks across different stages of differentiation or different subtypes of breast cancer. The common and specific hub genes in the estimated gene networks are closely related to stem cell differentiation processes and heterogeneity within breast cancers.
Collapse
Affiliation(s)
- Yun Huang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Sen Huang
- Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China
| | - Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Chen Liu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
2
|
Gao S, Chen Y, Wu Z, Kajigaya S, Wang X, Young NS. Time-Varying Gene Expression Network Analysis Reveals Conserved Transition States in Hematopoietic Differentiation between Human and Mouse. Genes (Basel) 2022; 13:genes13101890. [PMID: 36292775 PMCID: PMC9601530 DOI: 10.3390/genes13101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: analyses of gene networks can elucidate hematopoietic differentiation from single-cell gene expression data, but most algorithms generate only a single, static network. Because gene interactions change over time, it is biologically meaningful to examine time-varying structures and to capture dynamic, even transient states, and cell-cell relationships. (2) Methods: a transcriptomic atlas of hematopoietic stem and progenitor cells was used for network analysis. After pseudo-time ordering with Monocle 2, LOGGLE was used to infer time-varying networks and to explore changes of differentiation gene networks over time. A range of network analysis tools were used to examine properties and genes in the inferred networks. (3) Results: shared characteristics of attributes during the evolution of differentiation gene networks showed a “U” shape of network density over time for all three branches for human and mouse. Differentiation appeared as a continuous process, originating from stem cells, through a brief transition state marked by fewer gene interactions, before stabilizing in a progenitor state. Human and mouse shared hub genes in evolutionary networks. (4) Conclusions: the conservation of network dynamics in the hematopoietic systems of mouse and human was reflected by shared hub genes and network topological changes during differentiation.
Collapse
Affiliation(s)
- Shouguo Gao
- Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence:
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Zhijie Wu
- Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sachiko Kajigaya
- Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xujing Wang
- Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20817, USA
| | - Neal S. Young
- Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Zhang Y, Chen Q, Gong M, Zeng Y, Gao D. Gene regulatory networks analysis of muscle-invasive bladder cancer subtypes using differential graphical model. BMC Genomics 2021; 22:863. [PMID: 34852762 PMCID: PMC8638098 DOI: 10.1186/s12864-021-08113-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recently, erdafitinib (Balversa), the first targeted therapy drug for genetic alteration, was approved to metastatic urothelial carcinoma. Cancer genomics research has been greatly encouraged. Currently, a large number of gene regulatory networks between different states have been constructed, which can reveal the difference states of genes. However, they have not been applied to the subtypes of Muscle-invasive bladder cancer (MIBC). RESULTS In this paper, we propose a method that construct gene regulatory networks under different molecular subtypes of MIBC, and analyse the regulatory differences between different molecular subtypes. Through differential expression analysis and the differential network analysis of the top 100 differential genes in the network, we find that SERPINI1, NOTUM, FGFR1 and other genes have significant differences in expression and regulatory relationship between MIBC subtypes. CONCLUSIONS Furthermore, pathway enrichment analysis and differential network analysis demonstrate that Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction are significantly enriched pathways, and the genes contained in them are significant diversity in the subtypes of bladder cancer.
Collapse
Affiliation(s)
- Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qingyuan Chen
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Meiqin Gong
- West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanqi Zeng
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Dongrui Gao
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China.
- School of life Science and technology, center for information in medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
4
|
Sharma R, Kumar S, Song M. Fundamental gene network rewiring at the second order within and across mammalian systems. Bioinformatics 2021; 37:3293-3301. [PMID: 33950233 DOI: 10.1093/bioinformatics/btab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 02/24/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Genetic or epigenetic events can rewire molecular networks to induce extraordinary phenotypical divergences. Among the many network rewiring approaches, no model-free statistical methods can differentiate gene-gene pattern changes not attributed to marginal changes. This may obscure fundamental rewiring from superficial changes. RESULTS Here we introduce a model-free Sharma-Song test to determine if patterns differ in the second order, meaning that the deviation of the joint distribution from the product of marginal distributions is unequal across conditions. We prove an asymptotic chi-squared null distribution for the test statistic. Simulation studies demonstrate its advantage over alternative methods in detecting second-order differential patterns. Applying the test on three independent mammalian developmental transcriptome datasets, we report a lower frequency of co-expression network rewiring between human and mouse for the same tissue group than the frequency of rewiring between tissue groups within the same species. We also find secondorder differential patterns between microRNA promoters and genes contrasting cerebellum and liver development in mice. These patterns are enriched in the spliceosome pathway regulating tissue specificity. Complementary to previous mammalian comparative studies mostly driven by first-order effects, our findings contribute an understanding of system-wide second-order gene network rewiring within and across mammalian systems. Second-order differential patterns constitute evidence for fundamentally rewired biological circuitry due to evolution, environment, or disease. AVAILABILITY The generic Sharma-Song test is available from the R package 'DiffXTables' at https://cran.rproject.org/package=DiffXTables. Other code and data are described in Methods. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruby Sharma
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Sajal Kumar
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA.,Molecular Biology and Interdisciplinary Life Science Graduate Program New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|