1
|
Carreras J. Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks. J Imaging 2024; 10:200. [PMID: 39194989 DOI: 10.3390/jimaging10080200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Celiac disease (CD) is a gluten-sensitive immune-mediated enteropathy. This proof-of-concept study used a convolutional neural network (CNN) to classify hematoxylin and eosin (H&E) CD histological images, normal small intestine control, and non-specified duodenal inflammation (7294, 11,642, and 5966 images, respectively). The trained network classified CD with high performance (accuracy 99.7%, precision 99.6%, recall 99.3%, F1-score 99.5%, and specificity 99.8%). Interestingly, when the same network (already trained for the 3 class images), analyzed duodenal adenocarcinoma (3723 images), the new images were classified as duodenal inflammation in 63.65%, small intestine control in 34.73%, and CD in 1.61% of the cases; and when the network was retrained using the 4 histological subtypes, the performance was above 99% for CD and 97% for adenocarcinoma. Finally, the model added 13,043 images of Crohn's disease to include other inflammatory bowel diseases; a comparison between different CNN architectures was performed, and the gradient-weighted class activation mapping (Grad-CAM) technique was used to understand why the deep learning network made its classification decisions. In conclusion, the CNN-based deep neural system classified 5 diagnoses with high performance. Narrow artificial intelligence (AI) is designed to perform tasks that typically require human intelligence, but it operates within limited constraints and is task-specific.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
2
|
George AA, Tan JL, Kovoor JG, Lee A, Stretton B, Gupta AK, Bacchi S, George B, Singh R. Artificial intelligence in capsule endoscopy: development status and future expectations. MINI-INVASIVE SURGERY 2024. [DOI: 10.20517/2574-1225.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In this review, we aim to illustrate the state-of-the-art artificial intelligence (AI) applications in the field of capsule endoscopy. AI has made significant strides in gastrointestinal imaging, particularly in capsule endoscopy - a non-invasive procedure for capturing gastrointestinal tract images. However, manual analysis of capsule endoscopy videos is labour-intensive and error-prone, prompting the development of automated computational algorithms and AI models. While currently serving as a supplementary observer, AI has the capacity to evolve into an autonomous, integrated reading system, potentially significantly reducing capsule reading time while surpassing human accuracy. We searched Embase, Pubmed, Medline, and Cochrane databases from inception to 06 Jul 2023 for studies investigating the use of AI for capsule endoscopy and screened retrieved records for eligibility. Quantitative and qualitative data were extracted and synthesised to identify current themes. In the search, 824 articles were collected, and 291 duplicates and 31 abstracts were deleted. After a double-screening process and full-text review, 106 publications were included in the review. Themes pertaining to AI for capsule endoscopy included active gastrointestinal bleeding, erosions and ulcers, vascular lesions and angiodysplasias, polyps and tumours, inflammatory bowel disease, coeliac disease, hookworms, bowel prep assessment, and multiple lesion detection. This review provides current insights into the impact of AI on capsule endoscopy as of 2023. AI holds the potential for faster and precise readings and the prospect of autonomous image analysis. However, careful consideration of diagnostic requirements and potential challenges is crucial. The untapped potential within vision transformer technology hints at further evolution and even greater patient benefit.
Collapse
|
3
|
Krithika alias AnbuDevi M, Suganthi K. Review of Semantic Segmentation of Medical Images Using Modified Architectures of UNET. Diagnostics (Basel) 2022; 12:diagnostics12123064. [PMID: 36553071 PMCID: PMC9777361 DOI: 10.3390/diagnostics12123064] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
In biomedical image analysis, information about the location and appearance of tumors and lesions is indispensable to aid doctors in treating and identifying the severity of diseases. Therefore, it is essential to segment the tumors and lesions. MRI, CT, PET, ultrasound, and X-ray are the different imaging systems to obtain this information. The well-known semantic segmentation technique is used in medical image analysis to identify and label regions of images. The semantic segmentation aims to divide the images into regions with comparable characteristics, including intensity, homogeneity, and texture. UNET is the deep learning network that segments the critical features. However, UNETs basic architecture cannot accurately segment complex MRI images. This review introduces the modified and improved models of UNET suitable for increasing segmentation accuracy.
Collapse
|
4
|
Endoscopy, video capsule endoscopy, and biopsy for automated celiac disease detection: A review. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Parkash O, Siddiqui ATS, Jiwani U, Rind F, Padhani ZA, Rizvi A, Hoodbhoy Z, Das JK. Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:1018937. [PMID: 36405592 PMCID: PMC9672666 DOI: 10.3389/fmed.2022.1018937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Artificial Intelligence (AI) holds considerable promise for diagnostics in the field of gastroenterology. This systematic review and meta-analysis aims to assess the diagnostic accuracy of AI models compared with the gold standard of experts and histopathology for the diagnosis of various gastrointestinal (GI) luminal pathologies including polyps, neoplasms, and inflammatory bowel disease. Methods We searched PubMed, CINAHL, Wiley Cochrane Library, and Web of Science electronic databases to identify studies assessing the diagnostic performance of AI models for GI luminal pathologies. We extracted binary diagnostic accuracy data and constructed contingency tables to derive the outcomes of interest: sensitivity and specificity. We performed a meta-analysis and hierarchical summary receiver operating characteristic curves (HSROC). The risk of bias was assessed using Quality Assessment for Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Subgroup analyses were conducted based on the type of GI luminal disease, AI model, reference standard, and type of data used for analysis. This study is registered with PROSPERO (CRD42021288360). Findings We included 73 studies, of which 31 were externally validated and provided sufficient information for inclusion in the meta-analysis. The overall sensitivity of AI for detecting GI luminal pathologies was 91.9% (95% CI: 89.0–94.1) and specificity was 91.7% (95% CI: 87.4–94.7). Deep learning models (sensitivity: 89.8%, specificity: 91.9%) and ensemble methods (sensitivity: 95.4%, specificity: 90.9%) were the most commonly used models in the included studies. Majority of studies (n = 56, 76.7%) had a high risk of selection bias while 74% (n = 54) studies were low risk on reference standard and 67% (n = 49) were low risk for flow and timing bias. Interpretation The review suggests high sensitivity and specificity of AI models for the detection of GI luminal pathologies. There is a need for large, multi-center trials in both high income countries and low- and middle- income countries to assess the performance of these AI models in real clinical settings and its impact on diagnosis and prognosis. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=288360], identifier [CRD42021288360].
Collapse
Affiliation(s)
- Om Parkash
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Uswa Jiwani
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fahad Rind
- Head and Neck Oncology, The Ohio State University, Columbus, OH, United States
| | - Zahra Ali Padhani
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
| | - Arjumand Rizvi
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zahra Hoodbhoy
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jai K. Das
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- *Correspondence: Jai K. Das,
| |
Collapse
|
6
|
Yang S, Li H, Lin Z, Song Y, Lin C, Zhou T. Quantitative Analysis of Anesthesia Recovery Time by Machine Learning Prediction Models. MATHEMATICS 2022; 10:2772. [DOI: 10.3390/math10152772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is significant for anesthesiologists to have a precise grasp of the recovery time of the patient after anesthesia. Accurate prediction of anesthesia recovery time can support anesthesiologist decision-making during surgery to help reduce the risk of surgery in patients. However, effective models are not proposed to solve this problem for anesthesiologists. In this paper, we seek to find effective forecasting methods. First, we collect 1824 patient anesthesia data from the eye center and then performed data preprocessing. We extracted 85 variables to predict recovery time from anesthesia. Second, we extract anesthesia information between variables for prediction using machine learning methods, including Bayesian ridge, lightGBM, random forest, support vector regression, and extreme gradient boosting. We also design simple deep learning models as prediction models, including linear residual neural networks and jumping knowledge linear neural networks. Lastly, we perform a comparative experiment of the above methods on the dataset. The experiment demonstrates that the machine learning method performs better than the deep learning model mentioned above on a small number of samples. We find random forest and XGBoost are more efficient than other methods to extract information between variables on postoperative anesthesia recovery time.
Collapse
Affiliation(s)
- Shumin Yang
- Department of Computer Science, Shantou University, Shantou 515041, China
| | | | | | | | | | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
- Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515800, China
| |
Collapse
|
7
|
Yang Y, Li YX, Yao RQ, Du XH, Ren C. Artificial intelligence in small intestinal diseases: Application and prospects. World J Gastroenterol 2021; 27:3734-3747. [PMID: 34321840 PMCID: PMC8291013 DOI: 10.3748/wjg.v27.i25.3734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The small intestine is located in the middle of the gastrointestinal tract, so small intestinal diseases are more difficult to diagnose than other gastrointestinal diseases. However, with the extensive application of artificial intelligence in the field of small intestinal diseases, with its efficient learning capacities and computational power, artificial intelligence plays an important role in the auxiliary diagnosis and prognosis prediction based on the capsule endoscopy and other examination methods, which improves the accuracy of diagnosis and prediction and reduces the workload of doctors. In this review, a comprehensive retrieval was performed on articles published up to October 2020 from PubMed and other databases. Thereby the application status of artificial intelligence in small intestinal diseases was systematically introduced, and the challenges and prospects in this field were also analyzed.
Collapse
Affiliation(s)
- Yu Yang
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yu-Xuan Li
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Trauma Research Center, The Fourth Medical Center and Medical Innovation Research Division of the Chinese People‘s Liberation Army General Hospital, Beijing 100048, China
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiao-Hui Du
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Chao Ren
- Trauma Research Center, The Fourth Medical Center and Medical Innovation Research Division of the Chinese People‘s Liberation Army General Hospital, Beijing 100048, China
| |
Collapse
|
8
|
Cai L, Lei M, Zhang S, Yu Y, Zhou T, Qin J. A noise-immune LSTM network for short-term traffic flow forecasting. CHAOS (WOODBURY, N.Y.) 2020; 30:023135. [PMID: 32113252 DOI: 10.1063/1.5120502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Accurate and timely short-term traffic flow forecasting plays a key role in intelligent transportation systems, especially for prospective traffic control. For the past decade, a series of methods have been developed for short-term traffic flow forecasting. However, due to the intrinsic stochastic and evolutionary trend, accurate forecasting remains challenging. In this paper, we propose a noise-immune long short-term memory (NiLSTM) network for short-term traffic flow forecasting, which embeds a noise-immune loss function deduced by maximum correntropy into the long short-term memory (LSTM) network. Different from the conventional LSTM network equipped with the mean square error loss, the maximum correntropy induced loss is a local similar metric, which is immunized to non-Gaussian noises. Extensive experiments on four benchmark datasets demonstrate the superior performance of our NiLSTM network by comparing it with the frequently used models and state-of-the-art models.
Collapse
Affiliation(s)
- Lingru Cai
- Department of Computer Science, College of Engineering, Shantou University, 515063 Shantou, China
| | - Mingqin Lei
- Department of Computer Science, College of Engineering, Shantou University, 515063 Shantou, China
| | - Shuangyi Zhang
- Department of Computer Science, College of Engineering, Shantou University, 515063 Shantou, China
| | - Yidan Yu
- Department of Computer Science, College of Engineering, Shantou University, 515063 Shantou, China
| | - Teng Zhou
- Department of Computer Science, College of Engineering, Shantou University, 515063 Shantou, China
| | - Jing Qin
- Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| |
Collapse
|
9
|
Li Y, Ge Z, Zhang Z, Shen Z, Wang Y, Zhou T, Wu R. Broad Learning Enhanced 1H-MRS for Early Diagnosis of Neuropsychiatric Systemic Lupus Erythematosus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8874521. [PMID: 33299467 PMCID: PMC7704182 DOI: 10.1155/2020/8874521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023]
Abstract
In this paper, we explore the potential of using the multivoxel proton magnetic resonance spectroscopy (1H-MRS) to diagnose neuropsychiatric systemic lupus erythematosus (NPSLE) with the assistance of a support vector machine broad learning system (BL-SVM). We retrospectively analysed 23 confirmed patients and 16 healthy controls, who underwent a 3.0 T magnetic resonance imaging (MRI) sequence with multivoxel 1H-MRS in our hospitals. One hundred and seventeen metabolic features were extracted from the multivoxel 1H-MRS image. Thirty-three metabolic features selected by the Mann-Whitney U test were considered to have a statistically significant difference (p < 0.05). However, the best accuracy achieved by conventional statistical methods using these 33 metabolic features was only 77%. We turned to develop a support vector machine broad learning system (BL-SVM) to quantitatively analyse the metabolic features from 1H-MRS. Although not all the individual features manifested statistics significantly, the BL-SVM could still learn to distinguish the NPSLE from the healthy controls. The area under the receiver operating characteristic curve (AUC), the sensitivity, and the specificity of our BL-SVM in predicting NPSLE were 95%, 95.8%, and 93%, respectively, by 3-fold cross-validation. We consequently conclude that the proposed system effectively and efficiently working on limited and noisy samples may brighten a noinvasive in vivo instrument for early diagnosis of NPSLE.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Zuhao Ge
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Zhiyan Zhang
- Department of Medical Imaging, Huizhou Central Hospital, Huizhou 516000, China
| | - Zhiwei Shen
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yukai Wang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou 515041, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
- Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education, Shantou 515063, China
| | - Renhua Wu
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|