1
|
Jiang J, Zhang C, Ke L, Hayes N, Zhu Y, Qiu H, Zhang B, Zhou T, Wei GW. A review of machine learning methods for imbalanced data challenges in chemistry. Chem Sci 2025:d5sc00270b. [PMID: 40271022 PMCID: PMC12013631 DOI: 10.1039/d5sc00270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Imbalanced data, where certain classes are significantly underrepresented in a dataset, is a widespread machine learning (ML) challenge across various fields of chemistry, yet it remains inadequately addressed. This data imbalance can lead to biased ML or deep learning (DL) models, which fail to accurately predict the underrepresented classes, thus limiting the robustness and applicability of these models. With the rapid advancement of ML and DL algorithms, several promising solutions to this issue have emerged, prompting the need for a comprehensive review of current methodologies. In this review, we examine the prominent ML approaches used to tackle the imbalanced data challenge in different areas of chemistry, including resampling techniques, data augmentation techniques, algorithmic approaches, and feature engineering strategies. Each of these methods is evaluated in the context of its application across various aspects of chemistry, such as drug discovery, materials science, cheminformatics, and catalysis. We also explore future directions for overcoming the imbalanced data challenge and emphasize data augmentation via physical models, large language models (LLMs), and advanced mathematics. The benefit of balanced data in new material design and production and the persistent challenges are discussed. Overall, this review aims to elucidate the prevalent ML techniques applied to mitigate the impacts of imbalanced data within the field of chemistry and offer insights into future directions for research and application.
Collapse
Affiliation(s)
- Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
| | - Chunhuan Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Lu Ke
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Nicole Hayes
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Huahai Qiu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University Wuhan 430200 P R. China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-sen University Guangzhou 510006 P R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University East Lansing Michigan 48824 USA
- Department of Electrical and Computer Engineering, Michigan State University East Lansing Michigan 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University East Lansing Michigan 48824 USA
| |
Collapse
|
2
|
Su R, Zhuang J, Liu S, Liu D, Feng K. EnILs: A General Ensemble Computational Approach for Predicting Inducing Peptides of Multiple Interleukins. J Comput Biol 2023; 30:1289-1304. [PMID: 38010531 DOI: 10.1089/cmb.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Interleukins (ILs) are a group of multifunctional cytokines, which play important roles in immune regulations and inflammatory responses. Recently, IL-6 has been found to affect the development of COVID-19, and significantly elevated levels of IL-6 cytokines have been reported in patients with severe COVID-19. IL-10 and IL-17 are anti-inflammatory and proinflammatory cytokines, respectively, which play multiple protective roles in host defense against pathogens. At present, a number of machine learning methods have been proposed to predict ILs inducing peptides, but their predictive performance needs to be further improved, and the inducing peptides of different ILs are predicted separately, rather than using a general approach. In our work, we combine the statistical features of peptide sequence with word embedding to design a general ensemble model named EnILs to predict inducing peptides of different ILs, in which the predictive probabilities of random forest, eXtreme Gradient Boosting and neural network are integrated in an average way. Compared with the state-of-the-art machine learning methods, EnILs shows considerable performance in the prediction of IL-6, IL-10, and IL-17 inducing peptides. In addition, we predict the most promising IL-6 inducing peptides in Severe Acute Respiratory Syndrome Coronavirus 2 spike protein in the case study for further experimental verification.
Collapse
Affiliation(s)
- Rui Su
- Department of Statistics, School of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Jujuan Zhuang
- Department of Statistics, School of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Shuhan Liu
- Department of Statistics, School of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Di Liu
- Department of Computer Science and Technology, Information Science and Technology College, Dalian Maritime University, Dalian, Liaoning, China
| | - Kexin Feng
- Department of Statistics, School of Science, Dalian Maritime University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Ahmed S, Rahman A, Hasan MAM, Rahman J, Islam MKB, Ahmad S. predML-Site: Predicting Multiple Lysine PTM Sites With Optimal Feature Representation and Data Imbalance Minimization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3624-3634. [PMID: 34546927 DOI: 10.1109/tcbb.2021.3114349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identifying of post-translational modifications (PTM) is crucial in the study of computational proteomics, cell biology, pathogenesis, and drug development due to its role in many bio-molecular mechanisms. Computational methods for predicting multiple PTM at the same lysine residues, often referred to as K-PTM, is still evolving. This paper presents a novel computational tool, abbreviated as predML-Site, for predicting KPTM, such as acetylation, crotonylation, methylation, succinylation from an uncategorized peptide sample involving single, multiple, or no modification. For informative feature representation, multiple sequence encoding schemes, such as the sequence-coupling, binary encoding, k-spaced amino acid pairs, amino acid factor have been used with ANOVA and incremental feature selection. As a core predictor, a cost-sensitive SVM classifier has been adopted which effectively mitigates the effect of class-label imbalance in the dataset. predML-Site predicts multi-label PTM sites with 84.18% accuracy using the top 91 features. It has also achieved 85.34% aiming and 86.58% coverage rate which are much better than the existing state-of-the-art predictors on the same rigorous validation test. This performance indicates that predML-Site can be used as a supportive tool for further K-PTM study. For the convenience of the experimental scientists, predML-Site has been deployed as a user-friendly web-server at http://103.99.176.239/predML-Site.
Collapse
|
4
|
Sohrawordi M, Hossain MA, Hasan MAM. PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection. Brief Bioinform 2022; 23:6655632. [PMID: 35929355 DOI: 10.1093/bib/bbac306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
A newly invented post-translational modification (PTM), phosphoglycerylation, has shown its essential role in the construction and functional properties of proteins and dangerous human diseases. Hence, it is very urgent to know about the molecular mechanism behind the phosphoglycerylation process to develop the drugs for related diseases. But accurately identifying of phosphoglycerylation site from a protein sequence in a laboratory is a very difficult and challenging task. Hence, the construction of an efficient computation model is greatly sought for this purpose. A little number of computational models are currently available for identifying the phosphoglycerylation sites, which are not able to reach their prediction capability at a satisfactory level. Therefore, an effective predictor named PLP_FS has been designed and constructed to identify phosphoglycerylation sites in this study. For the training purpose, an optimal number of feature sets was obtained by fusion of multiple F_Score feature selection techniques from the features generated by three types of sequence-based feature extraction methods and fitted with the support vector machine classification technique to the prediction model. On the other hand, the k-neighbor near cleaning and SMOTE methods were also implemented to balance the benchmark dataset. The suggested model in 10-fold cross-validation obtained an accuracy of 99.22%, a sensitivity of 98.17% and a specificity of 99.75% according to the experimental findings, which are better than other currently available predictors for accurately identifying the phosphoglycerylation sites.
Collapse
Affiliation(s)
- Md Sohrawordi
- Dept. of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
- Dept. of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md Ali Hossain
- Dept. of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md Al Mehedi Hasan
- Dept. of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| |
Collapse
|
5
|
PF-SMOTE: A novel parameter-free SMOTE for imbalanced datasets. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Zhang M, Jia C, Li F, Li C, Zhu Y, Akutsu T, Webb GI, Zou Q, Coin LJM, Song J. Critical assessment of computational tools for prokaryotic and eukaryotic promoter prediction. Brief Bioinform 2022; 23:6502561. [PMID: 35021193 PMCID: PMC8921625 DOI: 10.1093/bib/bbab551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
Promoters are crucial regulatory DNA regions for gene transcriptional activation. Rapid advances in next-generation sequencing technologies have accelerated the accumulation of genome sequences, providing increased training data to inform computational approaches for both prokaryotic and eukaryotic promoter prediction. However, it remains a significant challenge to accurately identify species-specific promoter sequences using computational approaches. To advance computational support for promoter prediction, in this study, we curated 58 comprehensive, up-to-date, benchmark datasets for 7 different species (i.e. Escherichia coli, Bacillus subtilis, Homo sapiens, Mus musculus, Arabidopsis thaliana, Zea mays and Drosophila melanogaster) to assist the research community to assess the relative functionality of alternative approaches and support future research on both prokaryotic and eukaryotic promoters. We revisited 106 predictors published since 2000 for promoter identification (40 for prokaryotic promoter, 61 for eukaryotic promoter, and 5 for both). We systematically evaluated their training datasets, computational methodologies, calculated features, performance and software usability. On the basis of these benchmark datasets, we benchmarked 19 predictors with functioning webservers/local tools and assessed their prediction performance. We found that deep learning and traditional machine learning-based approaches generally outperformed scoring function-based approaches. Taken together, the curated benchmark dataset repository and the benchmarking analysis in this study serve to inform the design and implementation of computational approaches for promoter prediction and facilitate more rigorous comparison of new techniques in the future.
Collapse
Affiliation(s)
| | - Cangzhi Jia
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | | | | | | | | | - Geoffrey I Webb
- Department of Data Science and Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia,Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Quan Zou
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | - Lachlan J M Coin
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| | - Jiangning Song
- Corresponding authors: Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: ; Lachlan J.M. Coin, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia. E-mail: ; Quan Zou, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. E-mail: ; Cangzhi Jia, School of Science, Dalian Maritime University, Dalian 116026, China. E-mail:
| |
Collapse
|
7
|
Zhu Y, Yin S, Zheng J, Shi Y, Jia C. O-glycosylation site prediction for Homo sapiens by combining properties and sequence features with support vector machine. J Bioinform Comput Biol 2021; 20:2150029. [PMID: 34806952 DOI: 10.1142/s0219720021500293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
O-glycosylation is a protein posttranslational modification important in regulating almost all cells. It is related to a large number of physiological and pathological phenomena. Recognizing O-glycosylation sites is the key to further investigating the molecular mechanism of protein posttranslational modification. This study aimed to collect a reliable dataset on Homo sapiens and develop an O-glycosylation predictor for Homo sapiens, named Captor, through multiple features. A random undersampling method and a synthetic minority oversampling technique were employed to deal with imbalanced data. In addition, the Kruskal-Wallis (K-W) test was adopted to optimize feature vectors and improve the performance of the model. A support vector machine, due to its optimal performance, was used to train and optimize the final prediction model after a comprehensive comparison of various classifiers in traditional machine learning methods and deep learning. On the independent test set, Captor outperformed the existing O-glycosylation tool, suggesting that Captor could provide more instructive guidance for further experimental research on O-glycosylation. The source code and datasets are available at https://github.com/YanZhu06/Captor/.
Collapse
Affiliation(s)
- Yan Zhu
- School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Shuwan Yin
- School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Jia Zheng
- School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Yixia Shi
- School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang 524048, P. R. China
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| |
Collapse
|
8
|
Islam MKB, Rahman J, Hasan MAM, Ahmad S. predForm-Site: Formylation site prediction by incorporating multiple features and resolving data imbalance. Comput Biol Chem 2021; 94:107553. [PMID: 34384997 DOI: 10.1016/j.compbiolchem.2021.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Formylation is one of the newly discovered post-translational modifications in lysine residue which is responsible for different kinds of diseases. In this work, a novel predictor, named predForm-Site, has been developed to predict formylation sites with higher accuracy. We have integrated multiple sequence features for developing a more informative representation of formylation sites. Moreover, decision function of the underlying classifier have been optimized on skewed formylation dataset during prediction model training for prediction quality improvement. On the dataset used by LFPred and Formator predictor, predForm-Site achieved 99.5% sensitivity, 99.8% specificity and 99.8% overall accuracy with AUC of 0.999 in the jackknife test. In the independent test, it has also achieved more than 97% sensitivity and 99% specificity. Similarly, in benchmarking with recent method CKSAAP_FormSite, the proposed predictor significantly outperformed in all the measures, particularly sensitivity by around 20%, specificity by nearly 30% and overall accuracy by more than 22%. These experimental results show that the proposed predForm-Site can be used as a complementary tool for the fast exploration of formylation sites. For convenience of the scientific community, predForm-Site has been deployed as an online tool, accessible at http://103.99.176.239:8080/predForm-Site.
Collapse
Affiliation(s)
- Md Khaled Ben Islam
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia; Department of Computer Science & Engineering, Pabna University of Science and Technology, Pabna, Bangladesh.
| | - Julia Rahman
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia; Department of Computer Science & Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh.
| | - Md Al Mehedi Hasan
- Department of Computer Science & Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Shamim Ahmad
- Department of Computer Science & Engineering, Rajshahi University, Rajshahi, Bangladesh
| |
Collapse
|
9
|
Ahmed S, Rahman A, Hasan MAM, Islam MKB, Rahman J, Ahmad S. predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance. PLoS One 2021; 16:e0249396. [PMID: 33793659 PMCID: PMC8016359 DOI: 10.1371/journal.pone.0249396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modification (PTM) involves covalent modification after the biosynthesis process and plays an essential role in the study of cell biology. Lysine phosphoglycerylation, a newly discovered reversible type of PTM that affects glycolytic enzyme activities, and is responsible for a wide variety of diseases, such as heart failure, arthritis, and degeneration of the nervous system. Our goal is to computationally characterize potential phosphoglycerylation sites to understand the functionality and causality more accurately. In this study, a novel computational tool, referred to as predPhogly-Site, has been developed to predict phosphoglycerylation sites in the protein. It has effectively utilized the probabilistic sequence-coupling information among the nearby amino acid residues of phosphoglycerylation sites along with a variable cost adjustment for the skewed training dataset to enhance the prediction characteristics. It has achieved around 99% accuracy with more than 0.96 MCC and 0.97 AUC in both 10-fold cross-validation and independent test. Even, the standard deviation in 10-fold cross-validation is almost negligible. This performance indicates that predPhogly-Site remarkably outperformed the existing prediction tools and can be used as a promising predictor, preferably with its web interface at http://103.99.176.239/predPhogly-Site.
Collapse
Affiliation(s)
- Sabit Ahmed
- Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
- * E-mail:
| | - Afrida Rahman
- Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Al Mehedi Hasan
- Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md Khaled Ben Islam
- Computer Science and Engineering, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Julia Rahman
- Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Shamim Ahmad
- Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
10
|
Zhu Y, Li F, Xiang D, Akutsu T, Song J, Jia C. Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks. Brief Bioinform 2020; 22:5998831. [PMID: 33227813 DOI: 10.1093/bib/bbaa299] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
A promoter is a region in the DNA sequence that defines where the transcription of a gene by RNA polymerase initiates, which is typically located proximal to the transcription start site (TSS). How to correctly identify the gene TSS and the core promoter is essential for our understanding of the transcriptional regulation of genes. As a complement to conventional experimental methods, computational techniques with easy-to-use platforms as essential bioinformatics tools can be effectively applied to annotate the functions and physiological roles of promoters. In this work, we propose a deep learning-based method termed Depicter (Deep learning for predicting promoter), for identifying three specific types of promoters, i.e. promoter sequences with the TATA-box (TATA model), promoter sequences without the TATA-box (non-TATA model), and indistinguishable promoters (TATA and non-TATA model). Depicter is developed based on an up-to-date, species-specific dataset which includes Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana promoters. A convolutional neural network coupled with capsule layers is proposed to train and optimize the prediction model of Depicter. Extensive benchmarking and independent tests demonstrate that Depicter achieves an improved predictive performance compared with several state-of-the-art methods. The webserver of Depicter is implemented and freely accessible at https://depicter.erc.monash.edu/.
Collapse
Affiliation(s)
- Yan Zhu
- School of Science, Dalian Maritime University, China
| | - Fuyi Li
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Australia
| | | | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Cangzhi Jia
- College of Science, Dalian Maritime University
| |
Collapse
|
11
|
Li P, Zhang H, Zhao X, Jia C, Li F, Song J. Pippin: A random forest-based method for identifying presynaptic and postsynaptic neurotoxins. J Bioinform Comput Biol 2020; 18:2050008. [PMID: 32372714 DOI: 10.1142/s0219720020500080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Presynaptic and postsynaptic neurotoxins are two types of neurotoxins from venomous animals and functionally important molecules in the neurosciences; however, their experimental characterization is difficult, time-consuming, and costly. Therefore, bioinformatics tools that can identify presynaptic and postsynaptic neurotoxins would be very useful for understanding their functions and mechanisms. In this study, we propose Pippin, a novel machine learning-based method that allows users to rapidly and accurately identify these two types of neurotoxins. Pippin was developed using the random forest (RF) algorithm and evaluated based on an up-to-date dataset. A variety of sequence and motif features were combined, and a two-step feature-selection algorithm was employed to characterize the optimal feature subset for presynaptic and postsynaptic neurotoxin prediction. Extensive benchmark tests illustrate that Pippin significantly improved predictive performance as compared with six other commonly used machine-learning algorithms, including the naïve Bayes classifier, Multinomial Naïve Bayes classifier (MNBC), AdaBoost, Bagging, K-nearest neighbors, and XGBoost. Additionally, we developed an online webserver for Pippin to facilitate public use. To the best of our knowledge, this is the first webserver for presynaptic and postsynaptic neurotoxin prediction.
Collapse
Affiliation(s)
- Pengyu Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - He Zhang
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Xuyang Zhao
- College of Information Engineering, Northwest A&F University, Yangling, 712100, P. R. China
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Fuyi Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
12
|
Li F, Chen J, Ge Z, Wen Y, Yue Y, Hayashida M, Baggag A, Bensmail H, Song J. Computational prediction and interpretation of both general and specific types of promoters in Escherichia coli by exploiting a stacked ensemble-learning framework. Brief Bioinform 2020; 22:2126-2140. [PMID: 32363397 DOI: 10.1093/bib/bbaa049] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Promoters are short consensus sequences of DNA, which are responsible for transcription activation or the repression of all genes. There are many types of promoters in bacteria with important roles in initiating gene transcription. Therefore, solving promoter-identification problems has important implications for improving the understanding of their functions. To this end, computational methods targeting promoter classification have been established; however, their performance remains unsatisfactory. In this study, we present a novel stacked-ensemble approach (termed SELECTOR) for identifying both promoters and their respective classification. SELECTOR combined the composition of k-spaced nucleic acid pairs, parallel correlation pseudo-dinucleotide composition, position-specific trinucleotide propensity based on single-strand, and DNA strand features and using five popular tree-based ensemble learning algorithms to build a stacked model. Both 5-fold cross-validation tests using benchmark datasets and independent tests using the newly collected independent test dataset showed that SELECTOR outperformed state-of-the-art methods in both general and specific types of promoter prediction in Escherichia coli. Furthermore, this novel framework provides essential interpretations that aid understanding of model success by leveraging the powerful Shapley Additive exPlanation algorithm, thereby highlighting the most important features relevant for predicting both general and specific types of promoters and overcoming the limitations of existing 'Black-box' approaches that are unable to reveal causal relationships from large amounts of initially encoded features.
Collapse
Affiliation(s)
- Fuyi Li
- Northwest A&F University, China.,Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Australia
| | - Jinxiang Chen
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University from the College of Information Engineering, Northwest A&F University, China
| | - Zongyuan Ge
- Monash University and also serves as a Deep Learning Specialist at NVIDIA AI Technology Centre. Before joining Monash, he was a research scientist at IBM Research Australia doing research in medical AI during 2016-2018. His research interests are AI, computer vision, medical image, robotics and deep learning
| | - Ya Wen
- computer technology from Ningxia University, China
| | - Yanwei Yue
- medical science from Southern Medical University, China
| | - Morihiro Hayashida
- informatics from Kyoto University, Japan, in 2005. He is an Assistant Professor in the Department of Electrical Engineering and Computer Science, National Institute of Technology, Matsue College, Japan
| | - Abdelkader Baggag
- computer science from the University of Minnesota. He is a Senior Scientist at the Qatar Computing Research Institute (QCRI) and has a joint appointment as an Associate Professor at Hamad Bin Khalifa University (HBKU) in the Division of Information and Computing Technology. His research interests include data mining, linear algebra and machine learning
| | - Halima Bensmail
- University of Pierre & Marie Currie (Paris 6) in France. She is currently a Principal Scientist at QCRI-HBKU and a joint Associate Professor at the College of Computer and Science Engineering, HBKU
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Monash University, Australia. He is also affiliated with the Monash Centre for Data Science, Faculty of Information Technology, Monash University. His research interests include bioinformatics, computational biology, machine learning, data mining, and pattern recognition
| |
Collapse
|
13
|
Zhu Y, Jia C, Li F, Song J. Inspector: a lysine succinylation predictor based on edited nearest-neighbor undersampling and adaptive synthetic oversampling. Anal Biochem 2020; 593:113592. [DOI: 10.1016/j.ab.2020.113592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|