1
|
Chen H, Chen K. Ensemble learning based on matrix completion improves microbe-disease association prediction. Brief Bioinform 2025; 26:bbaf075. [PMID: 40037643 PMCID: PMC11879468 DOI: 10.1093/bib/bbaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Microbes have a profound impact on human health. Identifying disease-associated microbes would provide helpful guidance for drug development and disease treatment. Through an enormous experimental effort, limited disease-associated microbes have been determined. Accurate computational approaches are needed to predict potential microbe-disease associations for biomedical screening. In this study, we present an ensemble learning framework entitled SABMDA to improve microbe-disease association inference. We first integrate multi-source of information from both microbes and diseases, and develop two matrix completion algorithms to predict microbe-disease associations successively. Ablation tests show combining the two matrix completion algorithms can receive better prediction performance. Moreover, comprehensive experiments, including cross-validations and independent test, demonstrate that SABMDA outperforms seven recent baseline methods significantly. Finally, we apply SABMDA to three diseases to predict their associated microbes, and results show SABMDA's remarkable prediction ability in real situations.
Collapse
Affiliation(s)
- Hailin Chen
- School of Information and Software Engineering, East China Jiaotong University, No. 808, Shuanggangdong Street, Nanchang 330013, China
| | - Kuan Chen
- School of Information and Software Engineering, East China Jiaotong University, No. 808, Shuanggangdong Street, Nanchang 330013, China
| |
Collapse
|
2
|
Wu J, Xiao L, Fan L, Wang L, Zhu X. Dual graph-embedded fusion network for predicting potential microbe-disease associations with sequence learning. Front Genet 2025; 16:1511521. [PMID: 40008230 PMCID: PMC11850361 DOI: 10.3389/fgene.2025.1511521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Recent studies indicate that microorganisms are crucial for maintaining human health. Dysbiosis, or an imbalance in these microbial communities, is strongly linked to a variety of human diseases. Therefore, understanding the impact of microbes on disease is essential. The DuGEL model leverages the strengths of graph convolutional neural network (GCN) and graph attention network (GAT), ensuring that both local and global relationships within the microbe-disease association network are captured. The integration of the Long Short-Term Memory Network (LSTM) further enhances the model's ability to understand sequential dependencies in the feature representations. This comprehensive approach allows DuGEL to achieve a high level of accuracy in predicting potential microbe-disease associations, making it a valuable tool for biomedical research and the discovery of new therapeutic targets. By combining advanced graph-based and sequence-based learning techniques, DuGEL addresses the limitations of existing methods and provides a robust framework for the prediction of microbe-disease associations. To evaluate the performance of DuGEL, we conducted comprehensive comparative experiments and case studies based on two databases, HMDAD, and Disbiome to demonstrate that DuGEL can effectively predict potential microbe-disease associations.
Collapse
Affiliation(s)
- Junlong Wu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
| | - Liqi Xiao
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
| | - Liu Fan
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
| | - Lei Wang
- Technology Innovation Center of Changsha, Changsha University, Changsha, China
| | - Xianyou Zhu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
- Hunan Engineering Research Center of Cyberspace Security Technology and Applications, Hengyang Normal University, Hengyang, China
| |
Collapse
|
3
|
Wang S, Liu JX, Li F, Wang J, Gao YL. M 3HOGAT: A Multi-View Multi-Modal Multi-Scale High-Order Graph Attention Network for Microbe-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:6259-6267. [PMID: 39012741 DOI: 10.1109/jbhi.2024.3429128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Numerous scientific studies have found a link between diverse microorganisms in the human body and complex human diseases. Because traditional experimental approaches are time-consuming and expensive, using computational methods to identify microbes correlated with diseases is critical. In this paper, a new microbe-disease association prediction model is proposed that combines a multi-view multi-modal network and a multi-scale feature fusion mechanism, called M3HOGAT. Firstly, a microbe-disease association network and multiple similarity views are constructed based on multi-source information. Then, consider that neighbor information from disparate orders might be more adept at learning node representations. Consequently, the higher-order graph attention network (HOGAT) is devised to aggregate neighbor information from disparate orders to extract microbe and disease features from different networks and views. Given that the embedding features of microbe and disease from different views possess varying importance, a multi-scale feature fusion mechanism is employed to learn their interaction information, thereby generating the final feature of microbes and diseases. Finally, an inner product decoder is used to reconstruct the microbe-disease association matrix. Compared with five state-of-the-art methods on the HMDAD and Disbiome datasets, the results of 5-fold cross-validations show that M3HOGAT achieves the best performance. Furthermore, case studies on asthma and obesity confirm the effectiveness of M3HOGAT in identifying potential disease-related microbes.
Collapse
|
4
|
Chen H, Chen K. Predicting disease-associated microbes based on similarity fusion and deep learning. Brief Bioinform 2024; 25:bbae550. [PMID: 39504483 PMCID: PMC11540060 DOI: 10.1093/bib/bbae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Increasing studies have revealed the critical roles of human microbiome in a wide variety of disorders. Identification of disease-associated microbes might improve our knowledge and understanding of disease pathogenesis and treatment. Computational prediction of microbe-disease associations would provide helpful guidance for further biomedical screening, which has received lots of research interest in bioinformatics. In this study, a deep learning-based computational approach entitled SGJMDA is presented for predicting microbe-disease associations. Specifically, SGJMDA first fuses multiple similarities of microbes and diseases using a nonlinear strategy, and extracts feature information from homogeneous networks composed of the fused similarities via a graph convolution network. Second, a heterogeneous microbe-disease network is built to further capture the structural information of microbes and diseases by employing multi-neighborhood graph convolution network and jumping knowledge network. Finally, potential microbe-disease associations are inferred through computing the linear correlation coefficients of their embeddings. Results from cross-validation experiments show that SGJMDA outperforms 6 state-of-the-art computational methods. Furthermore, we carry out case studies on three important diseases using SGJMDA, in which 19, 20, and 11 predictions out of their top 20 results are successfully checked by the latest databases, respectively. The excellent performance of SGJMDA suggests that it could be a valuable and promising tool for inferring disease-associated microbes.
Collapse
Affiliation(s)
- Hailin Chen
- School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Kuan Chen
- School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
5
|
Shi K, Huang K, Li L, Liu Q, Zhang Y, Zheng H. Predicting microbe-disease association based on graph autoencoder and inductive matrix completion with multi-similarities fusion. Front Microbiol 2024; 15:1438942. [PMID: 39355422 PMCID: PMC11443509 DOI: 10.3389/fmicb.2024.1438942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 10/03/2024] Open
Abstract
Background Clinical studies have demonstrated that microbes play a crucial role in human health and disease. The identification of microbe-disease interactions can provide insights into the pathogenesis and promote the diagnosis, treatment, and prevention of disease. Although a large number of computational methods are designed to screen novel microbe-disease associations, the accurate and efficient methods are still lacking due to data inconsistence, underutilization of prior information, and model performance. Methods In this study, we proposed an improved deep learning-based framework, named GIMMDA, to identify latent microbe-disease associations, which is based on graph autoencoder and inductive matrix completion. By co-training the information from microbe and disease space, the new representations of microbes and diseases are used to reconstruct microbe-disease association in the end-to-end framework. In particular, a similarity fusion strategy is conducted to improve prediction performance. Results The experimental results show that the performance of GIMMDA is competitive with that of existing state-of-the-art methods on 3 datasets (i.e., HMDAD, Disbiome, and multiMDA). In particular, it performs best with the area under the receiver operating characteristic curve (AUC) of 0.9735, 0.9156, 0.9396 on abovementioned 3 datasets, respectively. And the result also confirms that different similarity fusions can improve the prediction performance. Furthermore, case studies on two diseases, i.e., asthma and obesity, validate the effectiveness and reliability of our proposed model. Conclusion The proposed GIMMDA model show a strong capability in predicting microbe-disease associations. We expect that GPUDMDA will help identify potential microbe-related diseases in the future.
Collapse
Affiliation(s)
- Kai Shi
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin University of Technology, Guilin, China
| | - Kai Huang
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lin Li
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Qiaohui Liu
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Yi Zhang
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Huilin Zheng
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
6
|
Chen Z, Zhang L, Li J, Chen H. Microbe-disease associations prediction by graph regularized non-negative matrix factorization with L 2 , 1 $$ {L}_{2,1} $$ norm regularization terms. J Cell Mol Med 2024; 28:e18553. [PMID: 39239860 PMCID: PMC11377990 DOI: 10.1111/jcmm.18553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 09/07/2024] Open
Abstract
Microbes are involved in a wide range of biological processes and are closely associated with disease. Inferring potential disease-associated microbes as the biomarkers or drug targets may help prevent, diagnose and treat complex human diseases. However, biological experiments are time-consuming and expensive. In this study, we introduced a new method called iPALM-GLMF, which modelled microbe-disease association prediction as a problem of non-negative matrix factorization with graph dual regularization terms andL 2 , 1 $$ {L}_{2,1} $$ norm regularization terms. The graph dual regularization terms were used to capture potential features in the microbe and disease space, and theL 2 , 1 $$ {L}_{2,1} $$ norm regularization terms were used to ensure the sparsity of the feature matrices obtained from the non-negative matrix factorization and to improve the interpretability. To solve the model, iPALM-GLMF used a non-negative double singular value decomposition to initialize the matrix factorization and adopted an inertial Proximal Alternating Linear Minimization iterative process to obtain the final matrix factorization results. As a result, iPALM-GLMF performed better than other existing methods in leave-one-out cross-validation and fivefold cross-validation. In addition, case studies of different diseases demonstrated that iPALM-GLMF could effectively predict potential microbial-disease associations. iPALM-GLMF is publicly available at https://github.com/LiangzheZhang/iPALM-GLMF.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| | - Liangzhe Zhang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| | - Jingyi Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| | - Hang Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
7
|
Zhang C, Zhang Z, Zhang F, Zeng B, Liu X, Wang L. A computational model for potential microbe-disease association detection based on improved graph convolutional networks and multi-channel autoencoders. Front Microbiol 2024; 15:1435408. [PMID: 39144226 PMCID: PMC11322764 DOI: 10.3389/fmicb.2024.1435408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Accumulating evidence shows that human health and disease are closely related to the microbes in the human body. Methods In this manuscript, a new computational model based on graph attention networks and sparse autoencoders, called GCANCAE, was proposed for inferring possible microbe-disease associations. In GCANCAE, we first constructed a heterogeneous network by combining known microbe-disease relationships, disease similarity, and microbial similarity. Then, we adopted the improved GCN and the CSAE to extract neighbor relations in the adjacency matrix and novel feature representations in heterogeneous networks. After that, in order to estimate the likelihood of a potential microbe associated with a disease, we integrated these two types of representations to create unique eigenmatrices for diseases and microbes, respectively, and obtained predicted scores for potential microbe-disease associations by calculating the inner product of these two types of eigenmatrices. Results and discussion Based on the baseline databases such as the HMDAD and the Disbiome, intensive experiments were conducted to evaluate the prediction ability of GCANCAE, and the experimental results demonstrated that GCANCAE achieved better performance than state-of-the-art competitive methods under the frameworks of both 2-fold and 5-fold CV. Furthermore, case studies of three categories of common diseases, such as asthma, irritable bowel syndrome (IBS), and type 2 diabetes (T2D), confirmed the efficiency of GCANCAE.
Collapse
Affiliation(s)
| | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| | | | | | - Xin Liu
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| |
Collapse
|
8
|
Chen Z, Zhang L, Li J, Fu M. MLFLHMDA: predicting human microbe-disease association based on multi-view latent feature learning. Front Microbiol 2024; 15:1353278. [PMID: 38371933 PMCID: PMC10869561 DOI: 10.3389/fmicb.2024.1353278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction A growing body of research indicates that microorganisms play a crucial role in human health. Imbalances in microbial communities are closely linked to human diseases, and identifying potential relationships between microbes and diseases can help elucidate the pathogenesis of diseases. However, traditional methods based on biological or clinical experiments are costly, so the use of computational models to predict potential microbe-disease associations is of great importance. Methods In this paper, we present a novel computational model called MLFLHMDA, which is based on a Multi-View Latent Feature Learning approach to predict Human potential Microbe-Disease Associations. Specifically, we compute Gaussian interaction profile kernel similarity between diseases and microbes based on the known microbe-disease associations from the Human Microbe-Disease Association Database and perform a preprocessing step on the resulting microbe-disease association matrix, namely, weighting K nearest known neighbors (WKNKN) to reduce the sparsity of the microbe-disease association matrix. To obtain unobserved associations in the microbe and disease views, we extract different latent features based on the geometrical structure of microbes and diseases, and project multi-modal latent features into a common subspace. Next, we introduce graph regularization to preserve the local manifold structure of Gaussian interaction profile kernel similarity and add L p , q -norms to the projection matrix to ensure the interpretability and sparsity of the model. Results The AUC values for global leave-one-out cross-validation and 5-fold cross validation implemented by MLFLHMDA are 0.9165 and 0.8942+/-0.0041, respectively, which perform better than other existing methods. In addition, case studies of different diseases have demonstrated the superiority of the predictive power of MLFLHMDA. The source code of our model and the data are available on https://github.com/LiangzheZhang/MLFLHMDA_master.
Collapse
|
9
|
Tan H, Zhang Z, Liu X, Chen Y, Yang Z, Wang L. MDSVDNV: predicting microbe-drug associations by singular value decomposition and Node2vec. Front Microbiol 2024; 14:1303585. [PMID: 38260900 PMCID: PMC10800927 DOI: 10.3389/fmicb.2023.1303585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Recent researches have demonstrated that microbes are crucial for the growth and development of the human body, the movement of nutrients, and human health. Diseases may arise as a result of disruptions and imbalances in the microbiome. The pathological investigation of associated diseases and the advancement of clinical medicine can both benefit from the identification of drug-associated microbes. Methods In this article, we proposed a new prediction model called MDSVDNV to infer potential microbe-drug associations, in which the Node2vec network embedding approach and the singular value decomposition (SVD) matrix decomposition method were first adopted to produce linear and non-linear representations of microbe interactions. Results and discussion Compared with state-of-the-art competitive methods, intensive experimental results demonstrated that MDSVDNV could achieve the best AUC value of 98.51% under a 5-fold CV, which indicated that MDSVDNV outperformed existing competing models and may be an effective method for discovering latent microbe-drug associations in the future.
Collapse
Affiliation(s)
| | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| | | | | | | | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| |
Collapse
|
10
|
Peng L, Huang L, Tian G, Wu Y, Li G, Cao J, Wang P, Li Z, Duan L. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network. Front Microbiol 2023; 14:1244527. [PMID: 37789848 PMCID: PMC10543759 DOI: 10.3389/fmicb.2023.1244527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Background Microbes have dense linkages with human diseases. Balanced microorganisms protect human body against physiological disorders while unbalanced ones may cause diseases. Thus, identification of potential associations between microbes and diseases can contribute to the diagnosis and therapy of various complex diseases. Biological experiments for microbe-disease association (MDA) prediction are expensive, time-consuming, and labor-intensive. Methods We developed a computational MDA prediction method called GPUDMDA by combining graph attention autoencoder, positive-unlabeled learning, and deep neural network. First, GPUDMDA computes disease similarity and microbe similarity matrices by integrating their functional similarity and Gaussian association profile kernel similarity, respectively. Next, it learns the feature representation of each microbe-disease pair using graph attention autoencoder based on the obtained disease similarity and microbe similarity matrices. Third, it selects a few reliable negative MDAs based on positive-unlabeled learning. Finally, it takes the learned MDA features and the selected negative MDAs as inputs and designed a deep neural network to predict potential MDAs. Results GPUDMDA was compared with four state-of-the-art MDA identification models (i.e., MNNMDA, GATMDA, LRLSHMDA, and NTSHMDA) on the HMDAD and Disbiome databases under five-fold cross validations on microbes, diseases, and microbe-disease pairs. Under the three five-fold cross validations, GPUDMDA computed the best AUCs of 0.7121, 0.9454, and 0.9501 on the HMDAD database and 0.8372, 0.8908, and 0.8948 on the Disbiome database, respectively, outperforming the other four MDA prediction methods. Asthma is the most common chronic respiratory condition and affects ~339 million people worldwide. Inflammatory bowel disease is a class of globally chronic intestinal disease widely existed in the gut and gastrointestinal tract and extraintestinal organs of patients. Particularly, inflammatory bowel disease severely affects the growth and development of children. We used the proposed GPUDMDA method and found that Enterobacter hormaechei had potential associations with both asthma and inflammatory bowel disease and need further biological experimental validation. Conclusion The proposed GPUDMDA demonstrated the powerful MDA prediction ability. We anticipate that GPUDMDA helps screen the therapeutic clues for microbe-related diseases.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Liangliang Huang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Geng Tian
- Geneis (Beijing) Co. Ltd., Beijing, China
| | - Yan Wu
- Geneis (Beijing) Co. Ltd., Beijing, China
| | - Guang Li
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing, China
- Department of Pediatric Surgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Jianying Cao
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing, China
- Department of Pediatric Surgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Peng Wang
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Lian Duan
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing, China
- Department of Pediatric Surgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| |
Collapse
|
11
|
Wang L, Wang Y, Xuan C, Zhang B, Wu H, Gao J. Predicting potential microbe-disease associations based on multi-source features and deep learning. Brief Bioinform 2023; 24:bbad255. [PMID: 37406190 DOI: 10.1093/bib/bbad255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.
Collapse
Affiliation(s)
- Liugen Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Wang
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenxu Xuan
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bai Zhang
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanwen Wu
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Gao
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Xiang H, Guo R, Liu L, Guo T, Huang Q. MSIF-LNP: microbial and human health association prediction based on matrix factorization noise reduction for similarity fusion and bidirectional linear neighborhood label propagation. Front Microbiol 2023; 14:1216811. [PMID: 37389340 PMCID: PMC10303805 DOI: 10.3389/fmicb.2023.1216811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Studies have shown that microbes are closely related to human health. Clarifying the relationship between microbes and diseases that cause health problems can provide new solutions for the treatment, diagnosis, and prevention of diseases, and provide strong protection for human health. Currently, more and more similarity fusion methods are available to predict potential microbe-disease associations. However, existing methods have noise problems in the process of similarity fusion. To address this issue, we propose a method called MSIF-LNP that can efficiently and accurately identify potential connections between microbes and diseases, and thus clarify the relationship between microbes and human health. This method is based on matrix factorization denoising similarity fusion (MSIF) and bidirectional linear neighborhood propagation (LNP) techniques. First, we use non-linear iterative fusion to obtain a similarity network for microbes and diseases by fusing the initial microbe and disease similarities, and then reduce noise by using matrix factorization. Next, we use the initial microbe-disease association pairs as label information to perform linear neighborhood label propagation on the denoised similarity network of microbes and diseases. This enables us to obtain a score matrix for predicting microbe-disease relationships. We evaluate the predictive performance of MSIF-LNP and seven other advanced methods through 10-fold cross-validation, and the experimental results show that MSIF-LNP outperformed the other seven methods in terms of AUC. In addition, the analysis of Cystic fibrosis and Obesity cases further demonstrate the predictive ability of this method in practical applications.
Collapse
Affiliation(s)
- Hui Xiang
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Rong Guo
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Li Liu
- College of Physical Education, Suzhou University, Suzhou, Anhui, China
| | - Tengjie Guo
- College of Physical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Quan Huang
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
13
|
GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier. BMC Bioinformatics 2023; 24:35. [PMID: 36732704 PMCID: PMC9893988 DOI: 10.1186/s12859-023-05158-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
As new drug targets, human microbes are proven to be closely related to human health. Effective computational methods for inferring potential microbe-drug associations can provide a useful complement to conventional experimental methods and will facilitate drug research and development. However, it is still a challenging work to predict potential interactions for new microbes or new drugs, since the number of known microbe-drug associations is very limited at present. In this manuscript, we first constructed two heterogeneous microbe-drug networks based on multiple measures of similarity of microbes and drugs, and known microbe-drug associations or known microbe-disease-drug associations, respectively. And then, we established two feature matrices for microbes and drugs through concatenating various attributes of microbes and drugs. Thereafter, after taking these two feature matrices and two heterogeneous microbe-drug networks as inputs of a two-layer graph attention network, we obtained low dimensional feature representations for microbes and drugs separately. Finally, through integrating low dimensional feature representations with two feature matrices to form the inputs of a convolutional neural network respectively, a novel computational model named GACNNMDA was designed to predict possible scores of microbe-drug pairs. Experimental results show that the predictive performance of GACNNMDA is superior to existing advanced methods. Furthermore, case studies on well-known microbes and drugs demonstrate the effectiveness of GACNNMDA as well. Source codes and supplementary materials are available at: https://github.com/tyqGitHub/TYQ/tree/master/GACNNMDA.
Collapse
|
14
|
Shi K, Li L, Wang Z, Chen H, Chen Z, Fang S. Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy. Front Neurosci 2023; 16:1124315. [PMID: 36741060 PMCID: PMC9892757 DOI: 10.3389/fnins.2022.1124315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
The interactions between the microbiota and the human host can affect the physiological functions of organs (such as the brain, liver, gut, etc.). Accumulating investigations indicate that the imbalance of microbial community is closely related to the occurrence and development of diseases. Thus, the identification of potential links between microbes and diseases can provide insight into the pathogenesis of diseases. In this study, we propose a deep learning framework (MDAGCAN) based on graph convolutional attention network to identify potential microbe-disease associations. In MDAGCAN, we first construct a heterogeneous network consisting of the known microbe-disease associations and multi-similarity fusion networks of microbes and diseases. Then, the node embeddings considering the neighbor information of the heterogeneous network are learned by applying graph convolutional layers and graph attention layers. Finally, a bilinear decoder using node embedding representations reconstructs the unknown microbe-disease association. Experiments show that our method achieves reliable performance with average AUCs of 0.9778 and 0.9454 ± 0.0038 in the frameworks of Leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. Furthermore, we apply MDAGCAN to predict latent microbes for two high-risk human diseases, i.e., liver cirrhosis and epilepsy, and results illustrate that 16 and 17 out of the top 20 predicted microbes are verified by published literatures, respectively. In conclusion, our method displays effective and reliable prediction performance and can be expected to predict unknown microbe-disease associations facilitating disease diagnosis and prevention.
Collapse
Affiliation(s)
- Kai Shi
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, China
| | - Lin Li
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Zhengfeng Wang
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Huazhou Chen
- College of Science, Guilin University of Technology, Guilin, China
| | - Zilin Chen
- Department of Developmental and Behavioural Pediatric Department & Department of Child Primary Care, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuanfeng Fang
- Department of Children Health Care, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Tan Y, Zou J, Kuang L, Wang X, Zeng B, Zhang Z, Wang L. GSAMDA: a computational model for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder. BMC Bioinformatics 2022; 23:492. [PMID: 36401174 PMCID: PMC9673879 DOI: 10.1186/s12859-022-05053-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clinical studies show that microorganisms are closely related to human health, and the discovery of potential associations between microbes and drugs will facilitate drug research and development. However, at present, few computational methods for predicting microbe-drug associations have been proposed. RESULTS In this work, we proposed a novel computational model named GSAMDA based on the graph attention network and sparse autoencoder to infer latent microbe-drug associations. In GSAMDA, we first built a heterogeneous network through integrating known microbe-drug associations, microbe similarities and drug similarities. And then, we adopted a GAT-based autoencoder and a sparse autoencoder module respectively to learn topological representations and attribute representations for nodes in the newly constructed heterogeneous network. Finally, based on these two kinds of node representations, we constructed two kinds of feature matrices for microbes and drugs separately, and then, utilized them to calculate possible association scores for microbe-drug pairs. CONCLUSION A novel computational model is proposed for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder. Compared with other five state-of-the-art competitive methods, the experimental results illustrated that our model can achieve better performance. Moreover, case studies on two categories of representative drugs and microbes further demonstrated the effectiveness of our model as well.
Collapse
Affiliation(s)
- Yaqin Tan
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, China
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, 410022, China
| | - Juan Zou
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, China
| | - Xiangyi Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Bin Zeng
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, 410022, China
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Lei Wang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, China.
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, 410022, China.
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| |
Collapse
|
16
|
Wang L, Peng J, Kuang L, Tan Y, Chen Z. Identification of Essential Proteins Based on Local Random Walk and Adaptive Multi-View Multi-Label Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3507-3516. [PMID: 34788220 DOI: 10.1109/tcbb.2021.3128638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accumulating evidences have indicated that essential proteins play vital roles in human physiological process. In recent years, although researches on prediction of essential proteins have been developing rapidly, there are as well various limitations such as unsatisfactory data suitability, low accuracy of predictive results and so on. In this manuscript, a novel method called RWAMVL was proposed to predict essential proteins based on the Random Walk and the Adaptive Multi-View multi-label Learning. In RWAMVL, considering that the inherent noise is ubiquitous in existing datasets of known protein-protein interactions (PPIs), a variety of different features including biological features of proteins and topological features of PPI networks were obtained by adopting adaptive multi-view multi-label learning first. And then, an improved random walk method was designed to detect essential proteins based on these different features. Finally, in order to verify the predictive performance of RWAMVL, intensive experiments were done to compare it with multiple state-of-the-art predictive methods under different expeditionary frameworks. And as a result, RWAMVL was proven that it can achieve better prediction accuracy than all those competitive methods, which demonstrated as well that RWAMVL may be a potential tool for prediction of key proteins in the future.
Collapse
|
17
|
Hua M, Yu S, Liu T, Yang X, Wang H. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes. Interdiscip Sci 2022; 14:669-682. [PMID: 35428964 DOI: 10.1007/s12539-022-00514-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/06/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
MOTIVATION Exploring the interrelationships between microbes and disease can help microbiologists make decisions and plan treatments. Predicting new microbe-disease associations currently relies on biological experiments and domain knowledge, which is time-consuming and inefficient. Automated algorithms are used to uncover the intrinsic link between microbes and disease. However, due to data noise and inadequate understanding of relevant biology, the efficient prediction of microbe-disease associations is still crucial. This study develops a multi-view graph augmentation convolutional network (MVGCNMDA) to predict potential disease-associated microbes. METHODS First, we use two data augmentation methods, edge perturbation and node dropping, to remove the data noise in the preprocessing stage. Second, we calculate Gaussian interaction profile kernel similarity and cosine similarity. Therefore, the Graph Convolutional Network(GCN) can fully use multi-view features. Then, the multi-view features are fed into the multi-attention block to learn the weights of different features adaptively. Finally, the embedding results are obtained using a Convolutional Neural Network (CNN) combiner, and the matrix completion is used to predict the relationship between potential microbes and diseases. RESULTS We test our model on the Human microbe-disease Association Database (HMDAD), Disbiome, and the Combined Dataset (Peryton and MicroPhenoDB). The area under PR curve (AUPR), area under ROC curve (AUC), F1 score, and RECALL value are calculated to evaluate the performance of the developed MVGCNMDA. The AUPR is 0.9440, AUC is 0.9428, F1 score is 0.9383, and RECALL value is 0.8858. The experiments show that our model can accurately predict potential microbe-disease associations compared with the state-of-the-art works on the global Leave-One-Out-Cross-Validation (LOOCV) and the fivefold Cross-Validation (fivefold CV). To further verify the effectiveness of the proposed graph data augmentation, we designed five different settings in the ablation study. Furthermore, we present two case studies that validate the prediction of the potential association between microbes and diseases by MVGCNMDA.
Collapse
Affiliation(s)
- Meifang Hua
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Shengpeng Yu
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Tianyu Liu
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Xue Yang
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Hong Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
18
|
Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform 2022; 23:6553604. [PMID: 35325024 DOI: 10.1093/bib/bbac080] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, with the rapid development of techniques in bioinformatics and life science, a considerable quantity of biomedical data has been accumulated, based on which researchers have developed various computational approaches to discover potential associations between human microbes, drugs and diseases. This paper provides a comprehensive overview of recent advances in prediction of potential correlations between microbes, drugs and diseases from biological data to computational models. Firstly, we introduced the widely used datasets relevant to the identification of potential relationships between microbes, drugs and diseases in detail. And then, we divided a series of a lot of representative computing models into five major categories including network, matrix factorization, matrix completion, regularization and artificial neural network for in-depth discussion and comparison. Finally, we analysed possible challenges and opportunities in this research area, and at the same time we outlined some suggestions for further improvement of predictive performances as well.
Collapse
Affiliation(s)
- Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Yaqin Tan
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaoyu Yang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Pengyao Ping
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China
| |
Collapse
|
19
|
Wang L, Li H, Wang Y, Tan Y, Chen Z, Pei T, Zou Q. MDADP: A webserver integrating database and prediction tools for microbe-disease associations. IEEE J Biomed Health Inform 2022; 26:3427-3434. [PMID: 35254998 DOI: 10.1109/jbhi.2022.3156166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
More and more evidence has demonstrated that microbiota play important roles in the life processes of the human body. In recent years, various computational methods have been proposed for identifying potentially disease-associated microbes to save costs in traditional biological experiments. However, prediction performances of these methods are generally limited by outdated and incomplete datasets. And moreover, until now, there are limited studies that can provide visual predictive tools for inferring possible microbe-disease associations (MDAs) as well. Hence, in this manuscript, a novel webserver called MDADP will be proposed to identify latent MDAs, in which, a new MDA database together with interactive prediction tools for MDAs studies will be designed simultaneously. Especially, in the newly constructed MDA database, 2019 known MDAs between 58 diseases and 703 microbes have been manually collected first. And then, through adopting the average ranking method and the co-confidence method respectively, eight representative computational models have been integrated together to identify potential disease-related microbes. As a result, MDADP can provide not only interactive features for users to access and capture MDAs entities, but also effective tools for users to identify candidate microbes for different diseases. To our knowledge, MDADP is the first online platform that incorporates a new MDA database with comprehensive MDA prediction tools. Therefore, we believe that it will be a valuable source of information for researches in microbiology and disease-related fields. MDADP can be accessed at http://mdadp.leelab2997.cn.
Collapse
|