1
|
Agarwal S, Arya KV, Kumar Meena Y. CNN-O-ELMNet: Optimized Lightweight and Generalized Model for Lung Disease Classification and Severity Assessment. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4200-4210. [PMID: 38896522 DOI: 10.1109/tmi.2024.3416744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The high burden of lung diseases on healthcare necessitates effective detection methods. Current Computer-aided design (CAD) systems are limited by their focus on specific diseases and computationally demanding deep learning models. To overcome these challenges, we introduce CNN-O-ELMNet, a lightweight classification model designed to efficiently detect various lung diseases, surpassing the limitations of disease-specific CAD systems and the complexity of deep learning models. This model combines a convolutional neural network for deep feature extraction with an optimized extreme learning machine, utilizing the imperialistic competitive algorithm for enhanced predictions. We then evaluated the effectiveness of CNN-O-ELMNet using benchmark datasets for lung diseases: distinguishing pneumothorax vs. non-pneumothorax, tuberculosis vs. normal, and lung cancer vs. healthy cases. Our findings demonstrate that CNN-O-ELMNet significantly outperformed (p < 0.05) state-of-the-art methods in binary classifications for tuberculosis and cancer, achieving accuracies of 97.85% and 97.7%, respectively, while maintaining low computational complexity with only 2481 trainable parameters.We also extended themodel to categorize lung disease severity based on Brixia scores. Achieving a 96.2% accuracy in multi-class assessment for mild, moderate, and severe cases, makes it suitable for deployment in lightweight healthcare devices.
Collapse
|
2
|
S S, V S. FACNN: fuzzy-based adaptive convolution neural network for classifying COVID-19 in noisy CXR images. Med Biol Eng Comput 2024; 62:2893-2909. [PMID: 38710960 DOI: 10.1007/s11517-024-03107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
COVID-19 detection using chest X-rays (CXR) has evolved as a significant method for early diagnosis of the pandemic disease. Clinical trials and methods utilize X-ray images with computer and intelligent algorithms to improve detection and classification precision. This article thus proposes a fuzzy-based adaptive convolution neural network (FACNN) model to improve the detection precision by confining the false rates. The feature extraction process between the successive regions is validated using a fuzzy process that classifies labeled and unknown pixels. The membership functions are derived based on high precision features for detection and false rate suppression process. The convolution neural network process is responsible for increasing detection precision through recurrent training based on feature availability. This availability analysis is verified using fuzzy derivatives under local variances. Based on variance-reduced features, the appropriate regions with labeled and unknown features are used for normal or infected classification. Thus, the proposed FACNN improves accuracy, precision, and feature extraction by 14.36%, 8.74%, and 12.35%, respectively. This model reduces the false rate and extraction time by 10.35% and 10.66%, respectively.
Collapse
Affiliation(s)
- Suganyadevi S
- Department of ECE, KPR Institute of Engineering and Technology, Coimbatore, 641 407, India.
| | - Seethalakshmi V
- Department of ECE, KPR Institute of Engineering and Technology, Coimbatore, 641 407, India
| |
Collapse
|
3
|
Adhikari M, Hazra A, Nandy S. Deep Transfer Learning for Communicable Disease Detection and Recommendation in Edge Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2468-2479. [PMID: 35671308 DOI: 10.1109/tcbb.2022.3180393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Considering the increasing number of communicable disease cases such as COVID-19 worldwide, the early detection of the disease can prevent and limit the outbreak. Besides that, the PCR test kits are not available in most parts of the world, and there is genuine concern about their performance and reliability. To overcome this, in this paper, we develop a novel edge-centric healthcare framework integrating with wearable sensors and advanced machine learning (ML) model for timely decisions with minimum delay. Through wearable sensors, a set of features have been collected that are further preprocessed for preparing a useful dataset. However, due to limited resource capacity, analyzing the features in resource-constrained edge devices is challenging. Motivated by this, we introduce an advanced ML technique for data analysis at edge networks, namely Deep Transfer Learning (DTL). DTL transfers the knowledge from the well-trained model to a new lightweight ML model that can support the resource-constraint nature of distributed edge devices. We consider a benchmark COVID-19 dataset for validation purposes, consisting of 11 features and 2 Million sensor data. The extensive simulation results demonstrate the efficiency of the proposed DTL technique over the existing ones and achieve 99.8% accuracy while diseases prediction.
Collapse
|
4
|
Sistaninejhad B, Rasi H, Nayeri P. A Review Paper about Deep Learning for Medical Image Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:7091301. [PMID: 37284172 PMCID: PMC10241570 DOI: 10.1155/2023/7091301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/12/2023] [Accepted: 04/21/2023] [Indexed: 06/08/2023]
Abstract
Medical imaging refers to the process of obtaining images of internal organs for therapeutic purposes such as discovering or studying diseases. The primary objective of medical image analysis is to improve the efficacy of clinical research and treatment options. Deep learning has revamped medical image analysis, yielding excellent results in image processing tasks such as registration, segmentation, feature extraction, and classification. The prime motivations for this are the availability of computational resources and the resurgence of deep convolutional neural networks. Deep learning techniques are good at observing hidden patterns in images and supporting clinicians in achieving diagnostic perfection. It has proven to be the most effective method for organ segmentation, cancer detection, disease categorization, and computer-assisted diagnosis. Many deep learning approaches have been published to analyze medical images for various diagnostic purposes. In this paper, we review the work exploiting current state-of-the-art deep learning approaches in medical image processing. We begin the survey by providing a synopsis of research works in medical imaging based on convolutional neural networks. Second, we discuss popular pretrained models and general adversarial networks that aid in improving convolutional networks' performance. Finally, to ease direct evaluation, we compile the performance metrics of deep learning models focusing on COVID-19 detection and child bone age prediction.
Collapse
Affiliation(s)
| | - Habib Rasi
- Sahand University of Technology, East Azerbaijan, New City of Sahand, Iran
| | - Parisa Nayeri
- Khoy University of Medical Sciences, West Azerbaijan, Khoy, Iran
| |
Collapse
|
5
|
Panjeta M, Reddy A, Shah R, Shah J. Artificial intelligence enabled COVID-19 detection: techniques, challenges and use cases. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-28. [PMID: 37362659 PMCID: PMC10224655 DOI: 10.1007/s11042-023-15247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 06/28/2023]
Abstract
Deep Learning and Machine Learning are becoming more and more popular as their algorithms get progressively better, and their use is expected to have the large effect on improving the health care system. Also, the pandemic was a chance to show how adding AI to healthcare infrastructure could help, since infrastructures around the world are overworked and falling apart. These new technologies can be used to fight COVID-19 because they are flexible and can be changed. Based on these facts, we looked at how the ML and DL-based models can be used to deal with the COVID-19 pandemic problem and what the pros and cons of each are. This paper gives a full look at the different ways to find COVID-19. We looked at the COVID-19 issues in a systematic way and then rated the methods and techniques for finding it based on their availability, ease of use, accuracy, and cost. We have also shown in pictures how well each of the detection techniques works. We did a comparison of different detection models based on the above factors. This helps researchers understand the different methods and the pros and cons of using them as the basis for their research. In the last part, we talk about the open challenges and research questions that come with putting these techniques together with other detection methods.
Collapse
Affiliation(s)
- Manisha Panjeta
- Department of Computer Science and Engineering, Thapar Institute of Engineering Technology, Punjab, 147004 India
| | - Aryan Reddy
- Computer Science Department, NMIMS University, Mumbai, India
| | - Rushabh Shah
- Computer Science Department, NMIMS University, Mumbai, India
| | - Jash Shah
- Computer Science Department, NMIMS University, Mumbai, India
| |
Collapse
|
6
|
Abdel-Hamid L. Multiresolution analysis for COVID-19 diagnosis from chest CT images: wavelet vs. contourlet transforms. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-23. [PMID: 37362648 PMCID: PMC10175919 DOI: 10.1007/s11042-023-15485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/01/2022] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
Chest computer tomography (CT) provides a readily available and efficient tool for COVID-19 diagnosis. Wavelet and contourlet transforms have the advantages of being localized in both space and time. In addition, multiresolution analysis allows for the separation of relevant image information in the different subbands. In the present study, transform-based features were investigated for COVID-19 classification using chest CT images. Several textural and statistical features were computed from the approximation and detail subbands in order to fully capture disease symptoms in the chest CT images. Initially, multiresolution analysis was performed considering three different wavelet and contourlet levels to determine the transform and decomposition level most suitable for feature extraction. Analysis showed that contourlet features computed from the first decomposition level (L1) led to the most reliable COVID-19 classification results. The complete feature vector was computed in less than 25 ms for a single image having of resolution 256 × 256 pixels. Next, particle swarm optimization (PSO) was implemented to find the best set of L1-Contourlet features for enhanced performance. Accuracy, sensitivity, specificity, precision, and F-score of a 100% were achieved by the reduced feature set using the support vector machine (SVM) classifier. The presented contourlet-based COVID-19 detection method was also shown to outperform several state-of-the-art deep learning approaches from literature. The present study demonstrates the reliability of transform-based features for COVID-19 detection with the advantage of reduced computational complexity. Transform-based features are thus suitable for integration within real-time automatic screening systems used for the initial screening of COVID-19.
Collapse
Affiliation(s)
- Lamiaa Abdel-Hamid
- Department of Electronics & Communication, Faculty of Engineering, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
7
|
Bhatele KR, Jha A, Tiwari D, Bhatele M, Sharma S, Mithora MR, Singhal S. COVID-19 Detection: A Systematic Review of Machine and Deep Learning-Based Approaches Utilizing Chest X-Rays and CT Scans. Cognit Comput 2022; 16:1-38. [PMID: 36593991 PMCID: PMC9797382 DOI: 10.1007/s12559-022-10076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
This review study presents the state-of-the-art machine and deep learning-based COVID-19 detection approaches utilizing the chest X-rays or computed tomography (CT) scans. This study aims to systematically scrutinize as well as to discourse challenges and limitations of the existing state-of-the-art research published in this domain from March 2020 to August 2021. This study also presents a comparative analysis of the performance of four majorly used deep transfer learning (DTL) models like VGG16, VGG19, ResNet50, and DenseNet over the COVID-19 local CT scans dataset and global chest X-ray dataset. A brief illustration of the majorly used chest X-ray and CT scan datasets of COVID-19 patients utilized in state-of-the-art COVID-19 detection approaches are also presented for future research. The research databases like IEEE Xplore, PubMed, and Web of Science are searched exhaustively for carrying out this survey. For the comparison analysis, four deep transfer learning models like VGG16, VGG19, ResNet50, and DenseNet are initially fine-tuned and trained using the augmented local CT scans and global chest X-ray dataset in order to observe their performance. This review study summarizes major findings like AI technique employed, type of classification performed, used datasets, results in terms of accuracy, specificity, sensitivity, F1 score, etc., along with the limitations, and future work for COVID-19 detection in tabular manner for conciseness. The performance analysis of the four majorly used deep transfer learning models affirms that Visual Geometry Group 19 (VGG19) model delivered the best performance over both COVID-19 local CT scans dataset and global chest X-ray dataset.
Collapse
Affiliation(s)
| | - Anand Jha
- RJIT BSF Academy, Tekanpur, Gwalior India
| | | | | | | | | | | |
Collapse
|
8
|
A survey on multi-objective hyperparameter optimization algorithms for machine learning. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractHyperparameter optimization (HPO) is a necessary step to ensure the best possible performance of Machine Learning (ML) algorithms. Several methods have been developed to perform HPO; most of these are focused on optimizing one performance measure (usually an error-based measure), and the literature on such single-objective HPO problems is vast. Recently, though, algorithms have appeared that focus on optimizing multiple conflicting objectives simultaneously. This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms, distinguishing between metaheuristic-based algorithms, metamodel-based algorithms and approaches using a mixture of both. We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
Collapse
|
9
|
Kumar S, Chaube MK, Alsamhi SH, Gupta SK, Guizani M, Gravina R, Fortino G. A novel multimodal fusion framework for early diagnosis and accurate classification of COVID-19 patients using X-ray images and speech signal processing techniques. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107109. [PMID: 36174422 PMCID: PMC9465496 DOI: 10.1016/j.cmpb.2022.107109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE COVID-19 outbreak has become one of the most challenging problems for human being. It is a communicable disease caused by a new coronavirus strain, which infected over 375 million people already and caused almost 6 million deaths. This paper aims to develop and design a framework for early diagnosis and fast classification of COVID-19 symptoms using multimodal Deep Learning techniques. METHODS we collected chest X-ray and cough sample data from open source datasets, Cohen and datasets and local hospitals. The features are extracted from the chest X-ray images are extracted from chest X-ray datasets. We also used cough audio datasets from Coswara project and local hospitals. The publicly available Coughvid DetectNow and Virufy datasets are used to evaluate COVID-19 detection based on speech sounds, respiratory, and cough. The collected audio data comprises slow and fast breathing, shallow and deep coughing, spoken digits, and phonation of sustained vowels. Gender, geographical location, age, preexisting medical conditions, and current health status (COVID-19 and Non-COVID-19) are recorded. RESULTS The proposed framework uses the selection algorithm of the pre-trained network to determine the best fusion model characterized by the pre-trained chest X-ray and cough models. Third, deep chest X-ray fusion by discriminant correlation analysis is used to fuse discriminatory features from the two models. The proposed framework achieved recognition accuracy, specificity, and sensitivity of 98.91%, 96.25%, and 97.69%, respectively. With the fusion method we obtained 94.99% accuracy. CONCLUSION This paper examines the effectiveness of well-known ML architectures on a joint collection of chest-X-rays and cough samples for early classification of COVID-19. It shows that existing methods can effectively used for diagnosis and suggesting that the fusion learning paradigm could be a crucial asset in diagnosing future unknown illnesses. The proposed framework supports health informatics basis on early diagnosis, clinical decision support, and accurate prediction.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Computer Science and Engineering, International Institute of Information Technology, Naya Raipur, Chhattishgarh, India.
| | - Mithilesh Kumar Chaube
- Department of Mathematical Sciences, International Institute of Information Technology, Naya Raipur, Chhattishgarh, India.
| | - Saeed Hamood Alsamhi
- Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland; Faculty of Engineering, IBB University, Ibb, Yemen.
| | - Sachin Kumar Gupta
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, India.
| | - Mohsen Guizani
- Machine Learning Department, Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates.
| | - Raffaele Gravina
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende 87036, Italy.
| | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
10
|
Contrasting EfficientNet, ViT, and gMLP for COVID-19 Detection in Ultrasound Imagery. J Pers Med 2022; 12:jpm12101707. [PMID: 36294846 PMCID: PMC9605641 DOI: 10.3390/jpm12101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
A timely diagnosis of coronavirus is critical in order to control the spread of the virus. To aid in this, we propose in this paper a deep learning-based approach for detecting coronavirus patients using ultrasound imagery. We propose to exploit the transfer learning of a EfficientNet model pre-trained on the ImageNet dataset for the classification of ultrasound images of suspected patients. In particular, we contrast the results of EfficentNet-B2 with the results of ViT and gMLP. Then, we show the results of the three models by learning from scratch, i.e., without transfer learning. We view the detection problem from a multiclass classification perspective by classifying images as COVID-19, pneumonia, and normal. In the experiments, we evaluated the models on a publically available ultrasound dataset. This dataset consists of 261 recordings (202 videos + 59 images) belonging to 216 distinct patients. The best results were obtained using EfficientNet-B2 with transfer learning. In particular, we obtained precision, recall, and F1 scores of 95.84%, 99.88%, and 24 97.41%, respectively, for detecting the COVID-19 class. EfficientNet-B2 with transfer learning presented an overall accuracy of 96.79%, outperforming gMLP and ViT, which achieved accuracies of 93.03% and 92.82%, respectively.
Collapse
|
11
|
Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing Rech Biomed 2022; 43:486-510. [PMID: 34336141 PMCID: PMC8312058 DOI: 10.1016/j.irbm.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Background and objective In recent years, Artificial Intelligence has had an evident impact on the way research addresses challenges in different domains. It has proven to be a huge asset, especially in the medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact of deep learning and machine learning models in the detection of COVID-19 from medical images. This is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in this field. Methods The main focus of this study is the recent developments of classification and segmentation approaches to image-based COVID-19 detection. The study reviews 140 research papers published in different academic research databases. These papers have been screened and filtered based on specified criteria, to acquire insights prudent to image-based COVID-19 detection. Results The methods discussed in this review include different types of imaging modality, predominantly X-rays and CT scans. These modalities are used for classification and segmentation tasks as well. This review seeks to categorize and discuss the different deep learning and machine learning architectures employed for these tasks, based on the imaging modality utilized. It also hints at other possible deep learning and machine learning architectures that can be proposed for better results towards COVID-19 detection. Along with that, a detailed overview of the emerging trends and breakthroughs in Artificial Intelligence-based COVID-19 detection has been discussed as well. Conclusion This work concludes by stipulating the technical and non-technical challenges faced by researchers and illustrates the advantages of image-based COVID-19 detection with Artificial Intelligence techniques.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- School of Computing Sciences and Engineering, Vellore Institute of Technology, Chennai, India
| | - G S Kathiresan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
12
|
Analysis of Smart Lung Tumour Detector and Stage Classifier Using Deep Learning Techniques with Internet of Things. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4608145. [PMID: 36148416 PMCID: PMC9489382 DOI: 10.1155/2022/4608145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
The use of artificial intelligence (AI) and the Internet of Things (IoT), which is a developing technology in medical applications that assists physicians in making more informed decisions regarding patients' courses of treatment, has become increasingly widespread in recent years in the field of healthcare. On the other hand, the number of PET scans that are being performed is rising, and radiologists are getting significantly overworked as a result. As a direct result of this, a novel approach that goes by the name “computer-aided diagnostics” is now being investigated as a potential method for reducing the tremendous workloads. A Smart Lung Tumor Detector and Stage Classifier (SLD-SC) is presented in this study as a hybrid technique for PET scans. This detector can identify the stage of a lung tumour. Following the development of the modified LSTM for the detection of lung tumours, the proposed SLD-SC went on to develop a Multilayer Convolutional Neural Network (M-CNN) for the classification of the various stages of lung cancer. This network was then modelled and validated utilising standard benchmark images. The suggested SLD-SC is now being evaluated on lung cancer pictures taken from patients with the disease. We observed that our recommended method gave good results when compared to other tactics that are currently being used in the literature. These findings were outstanding in terms of the performance metrics accuracy, recall, and precision that were assessed. As can be shown by the much better outcomes that were achieved with each of the test images that were used, our proposed method excels its rivals in a variety of respects. In addition to this, it achieves an average accuracy of 97 percent in the categorization of lung tumours, which is much higher than the accuracy achieved by the other approaches.
Collapse
|
13
|
Text-Based Emotion Recognition Using Deep Learning Approach. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2645381. [PMID: 36052029 PMCID: PMC9427219 DOI: 10.1155/2022/2645381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
Sentiment analysis is a method to identify people's attitudes, sentiments, and emotions towards a given goal, such as people, activities, organizations, services, subjects, and products. Emotion detection is a subset of sentiment analysis as it predicts the unique emotion rather than just stating positive, negative, or neutral. In recent times, many researchers have already worked on speech and facial expressions for emotion recognition. However, emotion detection in text is a tedious task as cues are missing, unlike in speech, such as tonal stress, facial expression, pitch, etc. To identify emotions from text, several methods have been proposed in the past using natural language processing (NLP) techniques: the keyword approach, the lexicon-based approach, and the machine learning approach. However, there were some limitations with keyword- and lexicon-based approaches as they focus on semantic relations. In this article, we have proposed a hybrid (machine learning + deep learning) model to identify emotions in text. Convolutional neural network (CNN) and Bi-GRU were exploited as deep learning techniques. Support vector machine is used as a machine learning approach. The performance of the proposed approach is evaluated using a combination of three different types of datasets, namely, sentences, tweets, and dialogs, and it attains an accuracy of 80.11%.
Collapse
|
14
|
An Effective Deep Learning Model for Health Monitoring and Detection of COVID-19 Infected Patients: An End-to-End Solution. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7126259. [PMID: 35965776 PMCID: PMC9372529 DOI: 10.1155/2022/7126259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
The COVID-19 infection is the greatest danger to humankind right now because of the devastation it causes to the lives of its victims. It is important that infected people be tested in a timely manner in order to halt the spread of the disease. Physical approaches are time-consuming, expensive, and tedious. As a result, there is a pressing need for a cost-effective and efficient automated tool. A convolutional neural network is presented in this paper for analysing X-ray pictures of patients' chests. For the analysis of COVID-19 infections, this study investigates the most suitable pretrained deep learning models, which can be integrated with mobile or online apps and support the mobility of diagnostic instruments in the form of a portable tool. Patients can use the smartphone app to find the nearest healthcare testing facility, book an appointment, and get instantaneous results, while healthcare professionals can keep track of the details thanks to the web and mobile applications built for this study. Medical practitioners can apply the COVID-19 detection model for chest frontal X-ray pictures with ease. A user-friendly interface is created to make our end-to-end solution paradigm work. Based on the data, it appears that the model could be useful in the real world.
Collapse
|
15
|
Patel RK, Kashyap M. Automated diagnosis of COVID stages from lung CT images using statistical features in 2-dimensional flexible analytic wavelet transform. Biocybern Biomed Eng 2022; 42:829-841. [PMID: 35791429 PMCID: PMC9247116 DOI: 10.1016/j.bbe.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
The COVID-19 epidemic has been causing a global problem since December 2019. COVID-19 is highly contagious and spreads rapidly throughout the world. Thus, early detection is essential. The progression of COVID-19 lung illness has been demonstrated to be aided by chest imaging. The respiratory system is the most vulnerable component of the human body to the COVID virus. COVID can be diagnosed promptly and accurately using images from a chest X-ray and a computed tomography scan. CT scans are preferred over X-rays to rule out other pulmonary illnesses, assist venous entry, and pinpoint any new heart problems. The traditional and trending tools are physical, time-inefficient, and not more accurate. Many techniques for detecting COVID utilizing CT scan images have recently been developed, yet none of them can efficiently detect COVID at an early stage. We proposed a two-dimensional Flexible analytical wavelet transform (FAWT) based on a novel technique in this work. This method is decomposed pre-processed images into sub-bands. Then statistical-based relevant features are extracted, and principal component analysis (PCA) is used to identify robust features. After that, robust features are ranked with the help of the Student's t-value algorithm. Finally, features are applied to Least Square-SVM (RBF) for classification. According to the experimental outcomes, our model beat state-of-the-art approaches for COVID classification. This model attained better classification accuracy of 93.47%, specificity 93.34%, sensitivity 93.6% and F1-score 0.93 using tenfold cross-validation.
Collapse
|
16
|
Al Rahhal MM, Bazi Y, Jomaa RM, AlShibli A, Alajlan N, Mekhalfi ML, Melgani F. COVID-19 Detection in CT/X-ray Imagery Using Vision Transformers. J Pers Med 2022; 12:310. [PMID: 35207797 PMCID: PMC8876295 DOI: 10.3390/jpm12020310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
The steady spread of the 2019 Coronavirus disease has brought about human and economic losses, imposing a new lifestyle across the world. On this point, medical imaging tests such as computed tomography (CT) and X-ray have demonstrated a sound screening potential. Deep learning methodologies have evidenced superior image analysis capabilities with respect to prior handcrafted counterparts. In this paper, we propose a novel deep learning framework for Coronavirus detection using CT and X-ray images. In particular, a Vision Transformer architecture is adopted as a backbone in the proposed network, in which a Siamese encoder is utilized. The latter is composed of two branches: one for processing the original image and another for processing an augmented view of the original image. The input images are divided into patches and fed through the encoder. The proposed framework is evaluated on public CT and X-ray datasets. The proposed system confirms its superiority over state-of-the-art methods on CT and X-ray data in terms of accuracy, precision, recall, specificity, and F1 score. Furthermore, the proposed system also exhibits good robustness when a small portion of training data is allocated.
Collapse
Affiliation(s)
- Mohamad Mahmoud Al Rahhal
- Applied Computer Science Department, College of Applied Computer Science, King Saud University, Riyadh 11543, Saudi Arabia;
| | - Yakoub Bazi
- Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia;
| | - Rami M. Jomaa
- Computer Science Department, College of Computer and Cyber Sciences, University of Prince Mugrin, Medina 42241, Saudi Arabia;
| | - Ahmad AlShibli
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (A.A.); (M.L.M.)
| | - Naif Alajlan
- Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia;
| | - Mohamed Lamine Mekhalfi
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (A.A.); (M.L.M.)
| | - Farid Melgani
- Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy;
| |
Collapse
|
17
|
Attallah O. A computer-aided diagnostic framework for coronavirus diagnosis using texture-based radiomics images. Digit Health 2022; 8:20552076221092543. [PMID: 35433024 PMCID: PMC9005822 DOI: 10.1177/20552076221092543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The accurate and rapid detection of the novel coronavirus infection, coronavirus is very important to prevent the fast spread of such disease. Thus, reducing negative effects that influenced many industrial sectors, especially healthcare. Artificial intelligence techniques in particular deep learning could help in the fast and precise diagnosis of coronavirus from computed tomography images. Most artificial intelligence-based studies used the original computed tomography images to build their models; however, the integration of texture-based radiomics images and deep learning techniques could improve the diagnostic accuracy of the novel coronavirus diseases. This study proposes a computer-assisted diagnostic framework based on multiple deep learning and texture-based radiomics approaches. It first trains three Residual Networks (ResNets) deep learning techniques with two texture-based radiomics images including discrete wavelet transform and gray-level covariance matrix instead of the original computed tomography images. Then, it fuses the texture-based radiomics deep features sets extracted from each using discrete cosine transform. Thereafter, it further combines the fused texture-based radiomics deep features obtained from the three convolutional neural networks. Finally, three support vector machine classifiers are utilized for the classification procedure. The proposed method is validated experimentally on the benchmark severe respiratory syndrome coronavirus 2 computed tomography image dataset. The accuracies attained indicate that using texture-based radiomics (gray-level covariance matrix, discrete wavelet transform) images for training the ResNet-18 (83.22%, 74.9%), ResNet-50 (80.94%, 78.39%), and ResNet-101 (80.54%, 77.99%) is better than using the original computed tomography images (70.34%, 76.51%, and 73.42%) for ResNet-18, ResNet-50, and ResNet-101, respectively. Furthermore, the sensitivity, specificity, accuracy, precision, and F1-score achieved using the proposed computer-assisted diagnostic after the two fusion steps are 99.47%, 99.72%, 99.60%, 99.72%, and 99.60% which proves that combining texture-based radiomics deep features obtained from the three ResNets has boosted its performance. Thus, fusing multiple texture-based radiomics deep features mined from several convolutional neural networks is better than using only one type of radiomics approach and a single convolutional neural network. The performance of the proposed computer-assisted diagnostic framework allows it to be used by radiologists in attaining fast and accurate diagnosis.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
18
|
Kumar RL, Khan F, Din S, Band SS, Mosavi A, Ibeke E. Recurrent Neural Network and Reinforcement Learning Model for COVID-19 Prediction. Front Public Health 2021; 9:744100. [PMID: 34671588 PMCID: PMC8521000 DOI: 10.3389/fpubh.2021.744100] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023] Open
Abstract
Detection and prediction of the novel Coronavirus present new challenges for the medical research community due to its widespread across the globe. Methods driven by Artificial Intelligence can help predict specific parameters, hazards, and outcomes of such a pandemic. Recently, deep learning-based approaches have proven a novel opportunity to determine various difficulties in prediction. In this work, two learning algorithms, namely deep learning and reinforcement learning, were developed to forecast COVID-19. This article constructs a model using Recurrent Neural Networks (RNN), particularly the Modified Long Short-Term Memory (MLSTM) model, to forecast the count of newly affected individuals, losses, and cures in the following few days. This study also suggests deep learning reinforcement to optimize COVID-19's predictive outcome based on symptoms. Real-world data was utilized to analyze the success of the suggested system. The findings show that the established approach promises prognosticating outcomes concerning the current COVID-19 pandemic and outperformed the Long Short-Term Memory (LSTM) model and the Machine Learning model, Logistic Regresion (LR) in terms of error rate.
Collapse
Affiliation(s)
- R. Lakshmana Kumar
- Department of Computer Applications, Hindusthan College of Engineering and Technology, Coimbatore, India
| | - Firoz Khan
- Dubai Men's College, Higher Colleges of Technology, Dubai, United Arab Emirates
| | - Sadia Din
- Department of Information and Communication Engineering, Yeung University, Gyeongsan, South Korea
| | - Shahab S. Band
- Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Douliu, Taiwan
| | - Amir Mosavi
- Faculty of Civil Engineering, Technische Universität Dresden, Dresden, Germany
- John von Neumann Faculty of Informatics, Obuda University, Budapest, Hungary
| | - Ebuka Ibeke
- School of Creative and Cultural Business, Robert Gordon University, Aberdeen, United Kingdom
| |
Collapse
|
19
|
Deep supervised learning using self-adaptive auxiliary loss for COVID-19 diagnosis from imbalanced CT images. Neurocomputing 2021; 458:232-245. [PMID: 34121811 PMCID: PMC8180474 DOI: 10.1016/j.neucom.2021.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
The outbreak and rapid spread of coronavirus disease 2019 (COVID-19) has had a huge impact on the lives and safety of people around the world. Chest CT is considered an effective tool for the diagnosis and follow-up of COVID-19. For faster examination, automatic COVID-19 diagnostic techniques using deep learning on CT images have received increasing attention. However, the number and category of existing datasets for COVID-19 diagnosis that can be used for training are limited, and the number of initial COVID-19 samples is much smaller than the normal’s, which leads to the problem of class imbalance. It makes the classification algorithms difficult to learn the discriminative boundaries since the data of some classes are rich while others are scarce. Therefore, training robust deep neural networks with imbalanced data is a fundamental challenging but important task in the diagnosis of COVID-19. In this paper, we create a challenging clinical dataset (named COVID19-Diag) with category diversity and propose a novel imbalanced data classification method using deep supervised learning with a self-adaptive auxiliary loss (DSN-SAAL) for COVID-19 diagnosis. The loss function considers both the effects of data overlap between CT slices and possible noisy labels in clinical datasets on a multi-scale, deep supervised network framework by integrating the effective number of samples and a weighting regularization item. The learning process jointly and automatically optimizes all parameters over the deep supervised network, making our model generally applicable to a wide range of datasets. Extensive experiments are conducted on COVID19-Diag and three public COVID-19 diagnosis datasets. The results show that our DSN-SAAL outperforms the state-of-the-art methods and is effective for the diagnosis of COVID-19 in varying degrees of data imbalance.
Collapse
|
20
|
Kaur T, Gandhi TK, Panigrahi BK. Automated Diagnosis of COVID-19 Using Deep Features and Parameter Free BAT Optimization. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2021; 9:1800209. [PMID: 34235005 PMCID: PMC8248768 DOI: 10.1109/jtehm.2021.3077142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
Background: Accurate and fast diagnosis of COVID-19 is very important to manage the medical conditions of affected persons. The task is challenging owing to shortage and ineffectiveness of clinical testing kits. However, the existing problems can be improved by employing computational intelligent techniques on radiological images like CT-Scans (Computed Tomography) of lungs. Extensive research has been reported using deep learning models to diagnose the severity of COVID-19 from CT images. This has undoubtedly minimized the manual involvement in abnormality identification but reported detection accuracy is limited. Methods: The present work proposes an expert model based on deep features and Parameter Free BAT (PF-BAT) optimized Fuzzy K-nearest neighbor (PF-FKNN) classifier to diagnose novel coronavirus. In this proposed model, features are extracted from the fully connected layer of transfer learned MobileNetv2 followed by FKNN training. The hyperparameters of FKNN are fine-tuned using PF-BAT. Results: The experimental results on the benchmark COVID CT scan data reveal that the proposed algorithm attains a validation accuracy of 99.38% which is better than the existing state-of-the-art methods proposed in past. Conclusion: The proposed model will help in timely and accurate identification of the coronavirus at the various phases. Such kind of rapid diagnosis will assist clinicians to manage the healthcare condition of patients well and will help in speedy recovery from the diseases. Clinical and Translational Impact Statement - The proposed automated system can provide accurate and fast detection of COVID-19 signature from lung radiographs. Also, the usage of lighter MobileNetv2 architecture makes it practical for deployment in real-time.
Collapse
Affiliation(s)
- Taranjit Kaur
- Department of Electrical EngineeringIndian Institute of Technology Delhi (IIT Delhi)New Delhi110016India
| | - Tapan K. Gandhi
- Department of Electrical EngineeringIndian Institute of Technology Delhi (IIT Delhi)New Delhi110016India
| | - Bijaya K. Panigrahi
- Department of Electrical EngineeringIndian Institute of Technology Delhi (IIT Delhi)New Delhi110016India
| |
Collapse
|
21
|
Li X, Tan W, Liu P, Zhou Q, Yang J. Classification of COVID-19 Chest CT Images Based on Ensemble Deep Learning. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5528441. [PMID: 33936577 PMCID: PMC8061232 DOI: 10.1155/2021/5528441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
Novel coronavirus pneumonia (NCP) has become a global pandemic disease, and computed tomography-based (CT) image analysis and recognition are one of the important tools for clinical diagnosis. In order to assist medical personnel to achieve an efficient and fast diagnosis of patients with new coronavirus pneumonia, this paper proposes an assisted diagnosis algorithm based on ensemble deep learning. The method combines the Stacked Generalization ensemble learning with the VGG16 deep learning to form a cascade classifier, and the information constituting the cascade classifier comes from multiple subsets of the training set, each of which is used to collect deviant information about the generalization behavior of the data set, such that this deviant information fills the cascade classifier. The algorithm was experimentally validated for classifying patients with novel coronavirus pneumonia, patients with common pneumonia (CP), and normal controls, and the algorithm achieved a prediction accuracy of 93.57%, sensitivity of 94.21%, specificity of 93.93%, precision of 89.40%, and F1-score of 91.74% for the three categories. The results show that the method proposed in this paper has good classification performance and can significantly improve the performance of deep neural networks for multicategory prediction tasks.
Collapse
Affiliation(s)
- Xiaoshuo Li
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110189, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110189, China
- College of Computer Science and Engineering, Northeastern University, Shenyang 110189, China
| | - Pan Liu
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110189, China
| | - Qinghua Zhou
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110189, China
| | - Jinzhu Yang
- College of Computer Science and Engineering, Northeastern University, Shenyang 110189, China
| |
Collapse
|
22
|
Singh D, Kumar V, Kaur M. Densely connected convolutional networks-based COVID-19 screening model. APPL INTELL 2021; 51:3044-3051. [PMID: 34764584 PMCID: PMC7867501 DOI: 10.1007/s10489-020-02149-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/28/2022]
Abstract
The extensively utilized tool to detect novel coronavirus (COVID-19) is a real-time polymerase chain reaction (RT-PCR). However, RT-PCR kits are costly and consume critical time, around 6 to 9 hours to classify the subjects as COVID-19(+) or COVID-19(-). Due to the less sensitivity of RT-PCR, it suffers from high false-negative results. To overcome these issues, many deep learning models have been implemented in the literature for the early-stage classification of suspected subjects. To handle the sensitivity issue associated with RT-PCR, chest CT scans are utilized to classify the suspected subjects as COVID-19 (+), tuberculosis, pneumonia, or healthy subjects. The extensive study on chest CT scans of COVID-19 (+) subjects reveals that there are some bilateral changes and unique patterns. But the manual analysis from chest CT scans is a tedious task. Therefore, an automated COVID-19 screening model is implemented by ensembling the deep transfer learning models such as Densely connected convolutional networks (DCCNs), ResNet152V2, and VGG16. Experimental results reveal that the proposed ensemble model outperforms the competitive models in terms of accuracy, f-measure, area under curve, sensitivity, and specificity.
Collapse
|
23
|
Ragab DA, Attallah O. FUSI-CAD: Coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features. PeerJ Comput Sci 2020; 6:e306. [PMID: 33816957 PMCID: PMC7924442 DOI: 10.7717/peerj-cs.306] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
The precise and rapid diagnosis of coronavirus (COVID-19) at the very primary stage helps doctors to manage patients in high workload conditions. In addition, it prevents the spread of this pandemic virus. Computer-aided diagnosis (CAD) based on artificial intelligence (AI) techniques can be used to distinguish between COVID-19 and non-COVID-19 from the computed tomography (CT) imaging. Furthermore, the CAD systems are capable of delivering an accurate faster COVID-19 diagnosis, which consequently saves time for the disease control and provides an efficient diagnosis compared to laboratory tests. In this study, a novel CAD system called FUSI-CAD based on AI techniques is proposed. Almost all the methods in the literature are based on individual convolutional neural networks (CNN). Consequently, the FUSI-CAD system is based on the fusion of multiple different CNN architectures with three handcrafted features including statistical features and textural analysis features such as discrete wavelet transform (DWT), and the grey level co-occurrence matrix (GLCM) which were not previously utilized in coronavirus diagnosis. The SARS-CoV-2 CT-scan dataset is used to test the performance of the proposed FUSI-CAD. The results show that the proposed system could accurately differentiate between COVID-19 and non-COVID-19 images, as the accuracy achieved is 99%. Additionally, the system proved to be reliable as well. This is because the sensitivity, specificity, and precision attained to 99%. In addition, the diagnostics odds ratio (DOR) is ≥ 100. Furthermore, the results are compared with recent related studies based on the same dataset. The comparison verifies the competence of the proposed FUSI-CAD over the other related CAD systems. Thus, the novel FUSI-CAD system can be employed in real diagnostic scenarios for achieving accurate testing for COVID-19 and avoiding human misdiagnosis that might exist due to human fatigue. It can also reduce the time and exertion made by the radiologists during the examination process.
Collapse
Affiliation(s)
- Dina A. Ragab
- Electronics and Communications Engineering Department, Arab Academy for Science, Technology, and Maritime Transport (AASTMT), Alexandria, Egypt
| | - Omneya Attallah
- Electronics and Communications Engineering Department, Arab Academy for Science, Technology, and Maritime Transport (AASTMT), Alexandria, Egypt
| |
Collapse
|