Arsalan M, Yu X, Sadiq MT, Almogren A. Simultaneous Multi-Treatment Strategy for Brain Tumor Reduction via Nonlinear Control.
Brain Sci 2025;
15:207. [PMID:
40002539 PMCID:
PMC11853036 DOI:
10.3390/brainsci15020207]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Recently proposed brain-tumor treatment strategies prioritize fast reduction of tumor cell population while often neglecting the radiation or chemotherapeutic drug dosage requirements to achieve it. Moreover, these techniques provide chemotherapy based treatment strategies, while ignoring the toxic side effects of the drugs employed by it. Methods: This study updates the recently proposed brain-tumor system dynamics by incorporating radiotherapy along with chemotherapy to simultaneously initiate both therapies for a more comprehensive and effective response against tumor proliferation. Afterwards, based on the upgraded system dynamics, this study proposes a novel multi-input sigmoid-based smooth synergetic nonlinear controller with the aim to reduce the dosage requirements of both therapies while keeping the overall system response robust and efficient. The novelty of this study lies in the combination of radiotherapy and chemotherapy inputs in a way that prioritizes patients health and well-being, while integrating advanced synergetic control technique with a sigmoid function based smoothing agent. Results: The proposed method reduced baseline radiation and chemo drug dosages by 57% and 33% respectively while effectively suppressing tumor growth and proliferation. Similarly, the proposed controller reduced the time required for complete tumor mitigation by 60% while reducing the radiation and chemotherapeutic drug intensity by 93.8% and 21.3% respectively. Conclusions: This study offers significant improvement in tumor treatment methodologies by providing a safer, less riskier brain-tumor treatment strategy that has promising potential to improve survival rates against this menacing health condition so that the affected patients may lead a healthier and better quality of life.
Collapse