1
|
Xia H, Ji B, Qiao D, Peng S. CellMsg: graph convolutional networks for ligand-receptor-mediated cell-cell communication analysis. Brief Bioinform 2024; 26:bbae716. [PMID: 39800874 PMCID: PMC11725396 DOI: 10.1093/bib/bbae716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
The role of cell-cell communications (CCCs) is increasingly recognized as being important to differentiation, invasion, metastasis, and drug resistance in tumoral tissues. Developing CCC inference methods using traditional experimental methods are time-consuming, labor-intensive, cannot handle large amounts of data. To facilitate inference of CCCs, we proposed a computational framework, called CellMsg, which involves two primary steps: identifying ligand-receptor interactions (LRIs) and measuring the strength of LRIs-mediated CCCs. Specifically, CellMsg first identifies high-confident LRIs based on multimodal features of ligands and receptors and graph convolutional networks. Then, CellMsg measures the strength of intercellular communication by combining the identified LRIs and single-cell RNA-seq data using a three-point estimation method. Performance evaluation on four benchmark LRI datasets by five-fold cross validation demonstrated that CellMsg accurately captured the relationships between ligands and receptors, resulting in the identification of high-confident LRIs. Compared with other methods of identifying LRIs, CellMsg has better prediction performance and robustness. Furthermore, the LRIs identified by CellMsg were successfully validated through molecular docking. Finally, we examined the overlap of LRIs between CellMsg and five other classical CCC databases, as well as the intercellular crosstalk among seven cell types within a human melanoma tissue. In summary, CellMsg establishes a complete, reliable, and well-organized LRI database and an effective CCC strength evaluation method for each single-cell RNA-seq data. It provides a computational tool allowing researchers to decipher intercellular communications. CellMsg is freely available at https://github.com/pengsl-lab/CellMsg.
Collapse
Affiliation(s)
- Hong Xia
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Debin Qiao
- School of Computer and Artificial Intelligence, ZhengZhou University, Zhengzhou 450001, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Zeng X, Meng FF, Wen ML, Li SJ, Li Y. GNNGL-PPI: multi-category prediction of protein-protein interactions using graph neural networks based on global graphs and local subgraphs. BMC Genomics 2024; 25:406. [PMID: 38724906 PMCID: PMC11080243 DOI: 10.1186/s12864-024-10299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Most proteins exert their functions by interacting with other proteins, making the identification of protein-protein interactions (PPI) crucial for understanding biological activities, pathological mechanisms, and clinical therapies. Developing effective and reliable computational methods for predicting PPI can significantly reduce the time-consuming and labor-intensive associated traditional biological experiments. However, accurately identifying the specific categories of protein-protein interactions and improving the prediction accuracy of the computational methods remain dual challenges. To tackle these challenges, we proposed a novel graph neural network method called GNNGL-PPI for multi-category prediction of PPI based on global graphs and local subgraphs. GNNGL-PPI consisted of two main components: using Graph Isomorphism Network (GIN) to extract global graph features from PPI network graph, and employing GIN As Kernel (GIN-AK) to extract local subgraph features from the subgraphs of protein vertices. Additionally, considering the imbalanced distribution of samples in each category within the benchmark datasets, we introduced an Asymmetric Loss (ASL) function to further enhance the predictive performance of the method. Through evaluations on six benchmark test sets formed by three different dataset partitioning algorithms (Random, BFS, DFS), GNNGL-PPI outperformed the state-of-the-art multi-category prediction methods of PPI, as measured by the comprehensive performance evaluation metric F1-measure. Furthermore, interpretability analysis confirmed the effectiveness of GNNGL-PPI as a reliable multi-category prediction method for predicting protein-protein interactions.
Collapse
Affiliation(s)
- Xin Zeng
- College of Mathematics and Computer Science, Dali University, 671003, Dali, China
| | - Fan-Fang Meng
- College of Mathematics and Computer Science, Dali University, 671003, Dali, China
| | - Meng-Liang Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650000, Kunming, China
| | - Shu-Juan Li
- Yunnan Institute of Endemic Diseases Control & Prevention, 671000, Dali, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, 671003, Dali, China.
| |
Collapse
|
3
|
Zhou L, Wang X, Peng L, Chen M, Wen H. SEnSCA: Identifying possible ligand-receptor interactions and its application in cell-cell communication inference. J Cell Mol Med 2024; 28:e18372. [PMID: 38747737 PMCID: PMC11095317 DOI: 10.1111/jcmm.18372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell-cell communication (CCC) is often mediated via ligand-receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K-means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D-convolutional neural networks and multi-head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three-point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Xiwen Wang
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Lihong Peng
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Min Chen
- School of Computer ScienceHunan Institute of TechnologyHengyangChina
| | - Hong Wen
- School of Computer ScienceHunan University of TechnologyHunanChina
| |
Collapse
|
4
|
Xian L, Wang Y. Advances in Computational Methods for Protein–Protein Interaction Prediction. ELECTRONICS 2024; 13:1059. [DOI: 10.3390/electronics13061059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein–protein interactions (PPIs) are pivotal in various physiological processes inside biological entities. Accurate identification of PPIs holds paramount significance for comprehending biological processes, deciphering disease mechanisms, and advancing medical research. Given the costly and labor-intensive nature of experimental approaches, a multitude of computational methods have been devised to enable swift and large-scale PPI prediction. This review offers a thorough examination of recent strides in computational methodologies for PPI prediction, with a particular focus on the utilization of deep learning techniques within this domain. Alongside a systematic classification and discussion of relevant databases, feature extraction strategies, and prominent computational approaches, we conclude with a thorough analysis of current challenges and prospects for the future of this field.
Collapse
Affiliation(s)
- Lei Xian
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Halsana AA, Chakroborty T, Halder AK, Basu S. DensePPI: A Novel Image-Based Deep Learning Method for Prediction of Protein-Protein Interactions. IEEE Trans Nanobioscience 2023; 22:904-911. [PMID: 37028059 DOI: 10.1109/tnb.2023.3251192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Protein-protein interactions (PPI) are crucial for understanding the behaviour of living organisms and identifying disease associations. This paper proposes DensePPI, a novel deep convolution strategy applied to the 2D image map generated from the interacting protein pairs for PPI prediction. A colour encoding scheme has been introduced to embed the bigram interaction possibilities of Amino Acids into RGB colour space to enhance the learning and prediction task. The DensePPI model is trained on 5.5 million sub-images of size 128×128 generated from nearly 36,000 interacting and 36,000 non-interacting benchmark protein pairs. The performance is evaluated on independent datasets from five different organisms; Caenorhabditis elegans, Escherichia coli, Helicobacter Pylori, Homo sapiens and Mus Musculus. The proposed model achieves an average prediction accuracy score of 99.95% on these datasets, considering inter-species and intra-species interactions. The performance of DensePPI is compared with the state-of-the-art methods and outperforms those approaches in different evaluation metrics. Improved performance of DensePPI indicates the efficiency of the image-based encoding strategy of sequence information with the deep learning architecture in PPI prediction. The enhanced performance on diverse test sets shows that the DensePPI is significant for intra-species interaction prediction and cross-species interactions. The dataset, supplementary file, and the developed models are available at https://github.com/Aanzil/DensePPI for academic use only.
Collapse
|
6
|
Peng L, Yuan R, Han C, Han G, Tan J, Wang Z, Chen M, Chen X. CellEnBoost: A Boosting-Based Ligand-Receptor Interaction Identification Model for Cell-to-Cell Communication Inference. IEEE Trans Nanobioscience 2023; 22:705-715. [PMID: 37216267 DOI: 10.1109/tnb.2023.3278685] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell-to-cell communication (CCC) plays important roles in multicellular organisms. The identification of communication between cancer cells themselves and one between cancer cells and normal cells in tumor microenvironment helps understand cancer genesis, development and metastasis. CCC is usually mediated by Ligand-Receptor Interactions (LRIs). In this manuscript, we developed a Boosting-based LRI identification model (CellEnBoost) for CCC inference. First, potential LRIs are predicted by data collection, feature extraction, dimensional reduction, and classification based on an ensemble of Light gradient boosting machine and AdaBoost combining convolutional neural network. Next, the predicted LRIs and known LRIs are filtered. Third, the filtered LRIs are applied to CCC elucidation by combining CCC strength measurement and single-cell RNA sequencing data. Finally, CCC inference results are visualized using heatmap view, Circos plot view, and network view. The experimental results show that CellEnBoost obtained the best AUCs and AUPRs on the collected four LRI datasets. Case study in human head and neck squamous cell carcinoma (HNSCC) tissues demonstrates that fibroblasts were more likely to communicate with HNSCC cells, which is in accord with the results from iTALK. We anticipate that this work can contribute to the diagnosis and treatment of cancers.
Collapse
|
7
|
Lee M. Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review. Molecules 2023; 28:5169. [PMID: 37446831 DOI: 10.3390/molecules28135169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Deep learning, a potent branch of artificial intelligence, is steadily leaving its transformative imprint across multiple disciplines. Within computational biology, it is expediting progress in the understanding of Protein-Protein Interactions (PPIs), key components governing a wide array of biological functionalities. Hence, an in-depth exploration of PPIs is crucial for decoding the intricate biological system dynamics and unveiling potential avenues for therapeutic interventions. As the deployment of deep learning techniques in PPI analysis proliferates at an accelerated pace, there exists an immediate demand for an exhaustive review that encapsulates and critically assesses these novel developments. Addressing this requirement, this review offers a detailed analysis of the literature from 2021 to 2023, highlighting the cutting-edge deep learning methodologies harnessed for PPI analysis. Thus, this review stands as a crucial reference for researchers in the discipline, presenting an overview of the recent studies in the field. This consolidation helps elucidate the dynamic paradigm of PPI analysis, the evolution of deep learning techniques, and their interdependent dynamics. This scrutiny is expected to serve as a vital aid for researchers, both well-established and newcomers, assisting them in maneuvering the rapidly shifting terrain of deep learning applications in PPI analysis.
Collapse
Affiliation(s)
- Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
8
|
Ye J, Li A, Zheng H, Yang B, Lu Y. Machine Learning Advances in Predicting Peptide/Protein-Protein Interactions Based on Sequence Information for Lead Peptides Discovery. Adv Biol (Weinh) 2023; 7:e2200232. [PMID: 36775876 DOI: 10.1002/adbi.202200232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/30/2022] [Indexed: 02/14/2023]
Abstract
Peptides have shown increasing advantages and significant clinical value in drug discovery and development. With the development of high-throughput technologies and artificial intelligence (AI), machine learning (ML) methods for discovering new lead peptides have been expanded and incorporated into rational drug design. Predictions of peptide-protein interactions (PepPIs) and protein-protein interactions (PPIs) are both opportunities and challenges in computational biology, which will help to better understand the mechanisms of disease and provide the impetus for the discovery of lead peptides. This paper comprehensively reviews computational models for PepPI and PPI predictions. It begins with an introduction of various databases of peptide ligands and target proteins. Then it discusses data formats and feature representations for proteins and peptides. Furthermore, classical ML methods and emerging deep learning (DL) methods that can be used to train prediction models of PepPI and PPI are classified into four categories, and their advantages and disadvantages are analyzed. To assess the relative performance of different models, different validation protocols and evaluation indexes are discussed. The goal of this review is to help researchers quickly get started to develop computational frameworks using these integrated resources and eventually promote the discovery of lead peptides.
Collapse
Affiliation(s)
- Jiahao Ye
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - An Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Hao Zheng
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Banghua Yang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
9
|
Albu AI, Bocicor MI, Czibula G. MM-StackEns: A new deep multimodal stacked generalization approach for protein-protein interaction prediction. Comput Biol Med 2023; 153:106526. [PMID: 36623437 DOI: 10.1016/j.compbiomed.2022.106526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Accurate in-silico identification of protein-protein interactions (PPIs) is a long-standing problem in biology, with important implications in protein function prediction and drug design. Current computational approaches predominantly use a single data modality for describing protein pairs, which may not fully capture the characteristics relevant for identifying PPIs. Another limitation of existing methods is their poor generalization to proteins outside the training graph. In this paper, we aim to address these shortcomings by proposing a new ensemble approach for PPI prediction, which learns information from two modalities, corresponding to pairs of sequences and to the graph formed by the training proteins and their interactions. Our approach uses a siamese neural network to process sequence information, while graph attention networks are employed for the network view. For capturing the relationships between the proteins in a pair, we design a new feature fusion module, based on computing the distance between the distributions corresponding to the two proteins. The prediction is made using a stacked generalization procedure, in which the final classifier is represented by a Logistic Regression model trained on the scores predicted by the sequence and graph models. Additionally, we show that protein sequence embeddings obtained using pretrained language models can significantly improve the generalization of PPI methods. The experimental results demonstrate the good performance of our approach, which surpasses all the related work on two Yeast data sets, while outperforming the majority of literature approaches on two Human data sets and on independent multi-species data sets.
Collapse
Affiliation(s)
- Alexandra-Ioana Albu
- Department of Computer Science, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, Cluj-Napoca, 400084, Romania.
| | - Maria-Iuliana Bocicor
- Department of Computer Science, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, Cluj-Napoca, 400084, Romania.
| | - Gabriela Czibula
- Department of Computer Science, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, Cluj-Napoca, 400084, Romania.
| |
Collapse
|
10
|
Chen W, Wang S, Song T, Li X, Han P, Gao C. DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction. BMC Genomics 2022; 23:555. [PMID: 35922751 PMCID: PMC9351149 DOI: 10.1186/s12864-022-08772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background Protein-protein interaction (PPI) is very important for many biochemical processes. Therefore, accurate prediction of PPI can help us better understand the role of proteins in biochemical processes. Although there are many methods to predict PPI in biology, they are time-consuming and lack accuracy, so it is necessary to build an efficiently and accurately computational model in the field of PPI prediction. Results We present a novel sequence-based computational approach called DCSE (Double-Channel-Siamese-Ensemble) to predict potential PPI. In the encoding layer, we treat each amino acid as a word, and map it into an N-dimensional vector. In the feature extraction layer, we extract features from local and global perspectives by Multilayer Convolutional Neural Network (MCN) and Multilayer Bidirectional Gated Recurrent Unit with Convolutional Neural Networks (MBC). Finally, the output of the feature extraction layer is then fed into the prediction layer to output whether the input protein pair will interact each other. The MCN and MBC are siamese and ensemble based network, which can effectively improve the performance of the model. In order to demonstrate our model’s performance, we compare it with four machine learning based and three deep learning based models. The results show that our method outperforms other models in all evaluation criteria. The Accuracy, Precision, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{1}$$\end{document}F1, Recall and MCC of our model are 0.9303, 0.9091, 0.9268, 0.9452, 0.8609. For the other seven models, the highest Accuracy, Precision, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{1}$$\end{document}F1, Recall and MCC are 0.9288, 0.9243, 0.9246, 0.9250, 0.8572. We also test our model in the imbalanced dataset and transfer our model to another species. The results show our model is excellent. Conclusion Our model achieves the best performance by comparing it with seven other models. NLP-based coding method has a good effect on PPI prediction task. MCN and MBC extract protein sequence features from local and global perspectives and these two feature extraction layers are based on siamese and ensemble network structures. Siamese-based network structure can keep the features consistent and ensemble based network structure can effectively improve the accuracy of the model. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08772-6.
Collapse
Affiliation(s)
- Wenqi Chen
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Shuang Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China.
| | - Tao Song
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China.,Department of Artificial Intelligence, Polytechnical University of Madrid, Madrid, Spain
| | - Xue Li
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Peifu Han
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Changnan Gao
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
11
|
A Survey on Deep Networks Approaches in Prediction of Sequence-Based Protein–Protein Interactions. SN COMPUTER SCIENCE 2022; 3:298. [PMID: 35611239 PMCID: PMC9119573 DOI: 10.1007/s42979-022-01197-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/06/2022] [Indexed: 12/03/2022]
Abstract
The prominence of protein–protein interactions (PPIs) in system biology with diverse biological procedures has become the topic to discuss because it acts as a fundamental part in predicting the protein function of the target protein and drug ability of molecules. Numerous researches have been published to predict PPIs computationally because they provide an alternative solution to laboratory trials and a cost-effective way of predicting the most likely set of interactions at the entire proteome scale. In recent computational methods, deep learning has become a buzzword with numerous scientific researches. This paper presents, for the first time, a comprehensive survey of sequence-based PPI prediction by three popular deep learning architectures i.e. deep neural networks, convolutional neural networks and recurrent neural networks and its variants. The thorough survey discussed herein carefully mined every possible information, can help the researchers to further explore the success in this area.
Collapse
|