1
|
Li J, Lu X, Jiang K, Tang D, Ning B, Sun F. TARSL: Triple-Attention Cross-Network Representation Learning to Predict Synthetic Lethality for Anti-Cancer Drug Discovery. IEEE J Biomed Health Inform 2025; 29:1680-1691. [PMID: 37603479 DOI: 10.1109/jbhi.2023.3306768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Cancer is a multifaceted disease that results from co-mutations of multi biological molecules. A promising strategy for cancer therapy involves in exploiting the phenomenon of Synthetic Lethality (SL) by targeting the SL partner of cancer gene. Since traditional methods for SL prediction suffer from high-cost, time-consuming and off-targets effects, computational approaches have been efficient complementary to these methods. Most of existing approaches treat SL associations as independent of other biological interaction networks, and fail to consider other information from various biological networks. Despite some approaches have integrated different networks to capture multi-modal features of genes for SL prediction, these methods implicitly assume that all sources and levels of information contribute equally to the SL associations. As such, a comprehensive and flexible framework for learning gene cross-network representations for SL prediction is still lacking. In this work, we present a novel Triple-Attention cross-network Representation learning for SL prediction (TARSL) by capturing molecular features from heterogeneous sources. We employ three-level attention modules to consider the different contribution of multi-level information. In particular, feature-level attention can capture the correlations between molecular feature and network link, node-level attention can differentiate the importance of various neighbors, and network-level attention can concentrate on important network and reduce the effects of irrelated networks. We perform comprehensive experiments on human SL datasets and these results have proven that our model is consistently superior to baseline methods and predicted SL associations could aid in designing anti-cancer drugs.
Collapse
|
2
|
Hu X, Yi H, Cheng H, Zhao Y, Zhang D, Li J, Ruan J, Zhang J, Lu X. Multiple Heterogeneous Networks Representation With Latent Space for Synthetic Lethality Prediction. IEEE Trans Nanobioscience 2024; 23:564-571. [PMID: 39150817 DOI: 10.1109/tnb.2024.3444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Computational synthetic lethality (SL) method has become a promising strategy to identify SL gene pairs for targeted cancer therapy and cancer medicine development. Feature representation for integrating various biological networks is crutial to improve the identification performance. However, previous feature representation, such as matrix factorization and graph neural network, projects gene features onto latent variables by keeping a specific geometric metric. There is a lack of models of gene representational latent space with considerating multiple dimentionalities correlation and preserving latent geometric structures in both sample and feature spaces. Therefore, we propose a novel method to model gene Latent Space using matrix Tri-Factorization (LSTF) to obtain gene representation with embedding variables resulting from the potential interpretation of synthetic lethality. Meanwhile, manifold subspace regularization is applied to the tri-factorization to capture the geometrical manifold structure in the latent space with gene PPI functional and GO semantic embeddings. Then, SL gene pairs are identified by the reconstruction of the associations with gene representations in the latent space. The experimental results illustrate that LSTF is superior to other state-of-the-art methods. Case study demonstrate the effectiveness of the predicted SL associations.
Collapse
|
3
|
Kulkarni C, Quraishi A, Raparthi M, Shabaz M, Khan MA, Varma RA, Keshta I, Soni M, Byeon H. Hybrid disease prediction approach leveraging digital twin and metaverse technologies for health consumer. BMC Med Inform Decis Mak 2024; 24:92. [PMID: 38575951 PMCID: PMC10996111 DOI: 10.1186/s12911-024-02495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Emerging from the convergence of digital twin technology and the metaverse, consumer health (MCH) is witnessing a transformative shift. The amalgamation of bioinformatics with healthcare Big Data has ushered in a new era of disease prediction models that harness comprehensive medical data, enabling the anticipation of illnesses even before the onset of symptoms. In this model, deep neural networks stand out because they improve accuracy remarkably by increasing network depth and making weight changes using gradient descent. Nonetheless, traditional methods face their own set of challenges, including the issues of gradient instability and slow training. In this case, the Broad Learning System (BLS) stands out as a good alternative. It gets around the problems with gradient descent and lets you quickly rebuild a model through incremental learning. One problem with BLS is that it has trouble extracting complex features from complex medical data. This makes it less useful in a wide range of healthcare situations. In response to these challenges, we introduce DAE-BLS, a novel hybrid model that marries Denoising AutoEncoder (DAE) noise reduction with the efficiency of BLS. This hybrid approach excels in robust feature extraction, particularly within the intricate and multifaceted world of medical data. Validation using diverse datasets yields impressive results, with accuracies reaching as high as 98.50%. DAE-BLS's ability to rapidly adapt through incremental learning holds great promise for accurate and agile disease prediction, especially within the complex and dynamic healthcare scenarios of today.
Collapse
Affiliation(s)
- Chaitanya Kulkarni
- Department of Computer Engineering, Vidya Pratishthan's Kamalnayan Bajaj Institute of Engineering and Technology, Baramati, Pune, 413133, Maharashtra, India
| | - Aadam Quraishi
- M.D. Research, Intervention Treatment Institute, Houston, TX, USA
| | - Mohan Raparthi
- Software Engineer, Alphabet Life Science, Dallas, TX, 75063, USA
| | - Mohammad Shabaz
- Model Institute of Engineering and Technology, Jammu, J&K, India.
| | - Muhammad Attique Khan
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Raj A Varma
- Symbiosis Law School (SLS), Symbiosis International (Deemed University) (SIU), Vimannagar, Pune, Maharashtra, India
| | - Ismail Keshta
- Computer Science and Information Systems Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mukesh Soni
- Dr D Y Patil Vidyapeeth, Dr. D. Y. Patil School of Science and Technology, Pune, 411033, India
| | - Haewon Byeon
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae, Republic of Korea, 50834
| |
Collapse
|
4
|
Li J, Lu X, Jiang K, Tang D, Sun F, Ruan J. Latent space feature representation on multiple biological network for synthetic lethality interaction prediction. 2023 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2023:1236-1241. [DOI: 10.1109/bibm58861.2023.10385727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Jinxin Li
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Xinguo Lu
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Kaibao Jiang
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Daoxu Tang
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Fengxu Sun
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Jingjing Ruan
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| |
Collapse
|
5
|
Wang S, Wang F, Qiao S, Zhuang Y, Zhang K, Pang S, Nowak R, Lv Z. MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2023; 27:4639-4648. [PMID: 35759606 DOI: 10.1109/jbhi.2022.3186534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGANMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGANMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNA-disease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGANMDA in predicting unknown diseases.
Collapse
|
6
|
Lu X, Chen G, Li J, Hu X, Sun F. MAGCN: A Multiple Attention Graph Convolution Networks for Predicting Synthetic Lethality. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2681-2689. [PMID: 36374879 DOI: 10.1109/tcbb.2022.3221736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Synthetic lethality (SL) is a potential cancer therapeutic strategy and drug discovery. Computational approaches to identify synthetic lethality genes have become an effective complement to wet experiments which are time consuming and costly. Graph convolutional networks (GCN) has been utilized to such prediction task as be good at capturing the neighborhood dependency in a graph. However, it is still a lack of the mechanism of aggregating the complementary neighboring information from various heterogeneous graphs. Here, we propose the Multiple Attention Graph Convolution Networks for predicting synthetic lethality (MAGCN). First, we obtain the functional similarity features and topological structure features of genes from different data sources respectively, such as Gene Ontology data and Protein-Protein Interaction. Then, graph convolutional network is utilized to accumulate the knowledge from neighbor nodes according to synthetic lethal associations. Meanwhile, we propose a multiple graphs attention model and construct a multiple graphs attention network to learn the contribution factors of different graphs to generate embedded representation by aggregating these graphs. Finally, the generated feature matrix is decoded to predict potential synthetic lethal interaction. Experimental results show that MAGCN is superior to other baseline methods. Case study demonstrates the ability of MAGCN to predict human SL gene pairs.
Collapse
|
7
|
Liu J, Kuang Z, Deng L. GCNPCA: miRNA-Disease Associations Prediction Algorithm Based on Graph Convolutional Neural Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1041-1052. [PMID: 36049014 DOI: 10.1109/tcbb.2022.3203564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A growing number of studies have confirmed the important role of microRNAs (miRNAs) in human diseases and the aberrant expression of miRNAs affects the onset and progression of human diseases. The discovery of disease-associated miRNAs as new biomarkers promote the progress of disease pathology and clinical medicine. However, only a small proportion of miRNA-disease correlations have been validated by biological experiments. And identifying miRNA-disease associations through biological experiments is both expensive and inefficient. Therefore, it is important to develop efficient and highly accurate computational methods to predict miRNA-disease associations. A miRNA-disease associations prediction algorithm based on Graph Convolutional neural Networks and Principal Component Analysis (GCNPCA) is proposed in this paper. Specifically, the deep topological structure information is extracted from the heterogeneous network composed of miRNA and disease nodes by a Graph Convolutional neural Network (GCN) with an additional attention mechanism. The internal attribute information of the nodes is obtained by the Principal Component Analysis (PCA). Then, the topological structure information and the node attribute information are combined to construct comprehensive feature descriptors. Finally, the Random Forest (RF) is used to train and classify these feature descriptors. In the five-fold cross-validation experiment, the AUC and AUPR for the GCNPCA algorithm are 0.983 and 0.988 respectively.
Collapse
|
8
|
Chen X, Jiang Z. ISFMDA: Learning Interactions of Selected Features-Based Method for Predicting Potential MicroRNA-Disease Associations. J Comput Biol 2021; 28:1219-1227. [PMID: 34847740 DOI: 10.1089/cmb.2021.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prediction of potential microRNA-disease associations is one of the important tasks in computational biology fields. Mining more sophisticated features can improve the performance of the prediction methods. This article proposes a novel algorithm (ISFMDA) that can effectively learn low- or high-order interactions of recursive feature elimination selected features by an extreme gradient boosting, a factorization machine, and a deep neural network. As a result, ISFMDA can obtain an area under receiver operating characteristic curve (AUROC) of 0.9342 ± 0.0007 in fivefold cross-validation tests with 51.25% of original features, which verifies the effectiveness of the methods.
Collapse
Affiliation(s)
- Xuejun Chen
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Zhenran Jiang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| |
Collapse
|