1
|
Chen Q, Zhang Y, Gao J, Zhang J. CPPCGM: A Highly Efficient Sequence-Based Tool for Simultaneously Identifying and Generating Cell-Penetrating Peptides. J Chem Inf Model 2025; 65:3357-3369. [PMID: 40105337 DOI: 10.1021/acs.jcim.5c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cell-penetrating peptides (CPPs) are usually short oligopeptides with 5-30 amino acid residues. CPPs have been proven as important drug delivery vehicles into cells through different mechanisms, demonstrating their potential as therapeutic candidates. However, experimental screening and synthesis of CPPs could be time-consuming and expensive. Recently, numerous attempts have been made to develop computational methods as a cost-effective way for screening a number of potential CPP candidates. Despite significant advancements, current methods exhibit limited feature representation capabilities, thereby constraining the potential for further performance enhancements. In this study, we developed a deep learning framework called CPPCGM, which uses protein language models (PLMs) to identify and generate novel CPPs. There are two separate blocks in this framework: CPPClassifier and CPPGenerator. The former utilizes three pretrained models for simple voting, thereby accurately categorizing CPPs and non-CPPs. The latter, similar to a generative adversarial network, including a discriminator and a generator, generates peptides that are not present in the training data set. Our proposed CPPCGM has achieved remarkably high Matthews correlation coefficient scores of 0.876, 0.923, and 0.664 on three data sets based on the classification results. Compared with the state-of-the-art methods, the performance of our method is significantly improved. The results also demonstrated the generating potential of CPPCGM through qualitative and quantitative evaluation of the generated samples. Significantly, using PLM-based methods can optimize peptides for biochemical functions, benefiting drug delivery and biomedical applications. Materials related are publicly available at https://github.com/QiufenChen/CPPCGM.
Collapse
Affiliation(s)
- Qiufen Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yuewei Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
2
|
Asim MN, Asif T, Mehmood F, Dengel A. Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance. Comput Biol Med 2025; 188:109821. [PMID: 39987697 DOI: 10.1016/j.compbiomed.2025.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Peptides are gaining significant attention in diverse fields such as the pharmaceutical market has seen a steady rise in peptide-based therapeutics over the past six decades. Peptides have been utilized in the development of distinct applications including inhibitors of SARS-COV-2 and treatments for conditions like cancer and diabetes. Distinct types of peptides possess unique characteristics, and development of peptide-specific applications require the discrimination of one peptide type from others. To the best of our knowledge, approximately 230 Artificial Intelligence (AI) driven applications have been developed for 22 distinct types of peptides, yet there remains significant room for development of new predictors. A Comprehensive review addresses the critical gap by providing a consolidated platform for the development of AI-driven peptide classification applications. This paper offers several key contributions, including presenting the biological foundations of 22 unique peptide types and categorizes them into four main classes: Regulatory, Therapeutic, Nutritional, and Delivery Peptides. It offers an in-depth overview of 47 databases that have been used to develop peptide classification benchmark datasets. It summarizes details of 288 benchmark datasets that are used in development of diverse types AI-driven peptide classification applications. It provides a detailed summary of 197 sequence representation learning methods and 94 classifiers that have been used to develop 230 distinct AI-driven peptide classification applications. Across 22 distinct types peptide classification tasks related to 288 benchmark datasets, it demonstrates performance values of 230 AI-driven peptide classification applications. It summarizes experimental settings and various evaluation measures that have been employed to assess the performance of AI-driven peptide classification applications. The primary focus of this manuscript is to consolidate scattered information into a single comprehensive platform. This resource will greatly assist researchers who are interested in developing new AI-driven peptide classification applications.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany.
| | - Tayyaba Asif
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Faiza Mehmood
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Institute of Data Sciences, University of Engineering and Technology, Lahore, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| |
Collapse
|
3
|
Ramasundaram M, Sohn H, Madhavan T. A bird's-eye view of the biological mechanism and machine learning prediction approaches for cell-penetrating peptides. Front Artif Intell 2025; 7:1497307. [PMID: 39839972 PMCID: PMC11747587 DOI: 10.3389/frai.2024.1497307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Cell-penetrating peptides (CPPs) are highly effective at passing through eukaryotic membranes with various cargo molecules, like drugs, proteins, nucleic acids, and nanoparticles, without causing significant harm. Creating drug delivery systems with CPP is associated with cancer, genetic disorders, and diabetes due to their unique chemical properties. Wet lab experiments in drug discovery methodologies are time-consuming and expensive. Machine learning (ML) techniques can enhance and accelerate the drug discovery process with accurate and intricate data quality. ML classifiers, such as support vector machine (SVM), random forest (RF), gradient-boosted decision trees (GBDT), and different types of artificial neural networks (ANN), are commonly used for CPP prediction with cross-validation performance evaluation. Functional CPP prediction is improved by using these ML strategies by using CPP datasets produced by high-throughput sequencing and computational methods. This review focuses on several ML-based CPP prediction tools. We discussed the CPP mechanism to understand the basic functioning of CPPs through cells. A comparative analysis of diverse CPP prediction methods was conducted based on their algorithms, dataset size, feature encoding, software utilities, assessment metrics, and prediction scores. The performance of the CPP prediction was evaluated based on accuracy, sensitivity, specificity, and Matthews correlation coefficient (MCC) on independent datasets. In conclusion, this review will encourage the use of ML algorithms for finding effective CPPs, which will have a positive impact on future research on drug delivery and therapeutics.
Collapse
Affiliation(s)
- Maduravani Ramasundaram
- Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Chennai, India
| | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, Republic of Korea
| | - Thirumurthy Madhavan
- Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Chennai, India
| |
Collapse
|
4
|
Moreno-Vargas LM, Prada-Gracia D. Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:59. [PMID: 39795918 PMCID: PMC11720145 DOI: 10.3390/ijms26010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake. Clinical trials have highlighted the potential of CPPs in diagnosing and treating various diseases, including cancer, central nervous system disorders, eye disorders, and diabetes. This review provides a comprehensive overview of CPP classifications, potential applications, transduction mechanisms, and the most relevant algorithms to improve the accuracy and reliability of predictions in CPP development.
Collapse
|
5
|
Wang Y, Fang C. Cycle-ESM: Generation-assisted classification of antifungal peptides using ESM protein language model. Comput Biol Chem 2024; 113:108240. [PMID: 39437594 DOI: 10.1016/j.compbiolchem.2024.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
The rising prevalence of invasive fungal infections and the emergence of antifungal resistance highlight the urgent need for new antifungal medications. Antifungal peptides have emerged as promising alternatives to traditional antimicrobial agents. The identification of natural or synthetic antifungal peptides is crucial for advancing antifungal drug development. Typically, the availability of antifungal samples is limited, and significant sequence diversity exists among antifungal peptides, posing challenges for high-throughput screening. To address the identification challenge of antifungal peptides with limited sample availability, this study introduces the Cycle ESM method. Initially, the method utilises the ESM protein language model to generate additional data on antifungal peptides, serving as a data augmentation technique to enhance model training effectiveness. Subsequently, the ESM is employed in conjunction with a textCNN model to construct a classifier for peptide prediction, with a comprehensive exploration of peptide characteristics to improve prediction accuracy. Experimental results demonstrate that the performance of the Cycle ESM method surpasses that of existing methods across three distinct antifungal peptide datasets. This study presents a novel approach to antifungal peptide prediction and offers innovative insights for addressing classification problems with limited sample availability.
Collapse
Affiliation(s)
- YiMing Wang
- Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Chun Fang
- Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
6
|
Ma H, Zhou X, Zhang Z, Weng Z, Li G, Zhou Y, Yao Y. AI-Driven Design of Cell-Penetrating Peptides for Therapeutic Biotechnology. Int J Pept Res Ther 2024; 30:69. [DOI: 10.1007/s10989-024-10654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 01/05/2025]
|
7
|
Amjad A, Ahmed S, Kabir M, Arif M, Alam T. A novel deep learning identifier for promoters and their strength using heterogeneous features. Methods 2024; 230:119-128. [PMID: 39168294 DOI: 10.1016/j.ymeth.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024] Open
Abstract
Promoters, which are short (50-1500 base-pair) in DNA regions, have emerged to play a critical role in the regulation of gene transcription. Numerous dangerous diseases, likewise cancer, cardiovascular, and inflammatory bowel diseases, are caused by genetic variations in promoters. Consequently, the correct identification and characterization of promoters are significant for the discovery of drugs. However, experimental approaches to recognizing promoters and their strengths are challenging in terms of cost, time, and resources. Therefore, computational techniques are highly desirable for the correct characterization of promoters from unannotated genomic data. Here, we designed a powerful bi-layer deep-learning based predictor named "PROCABLES", which discriminates DNA samples as promoters in the first-phase and strong or weak promoters in the second-phase respectively. The proposed method utilizes five distinct features, such as word2vec, k-spaced nucleotide pairs, trinucleotide propensity-based features, trinucleotide composition, and electron-ion interaction pseudopotentials, to extract the hidden patterns from the DNA sequence. Afterwards, a stacked framework is formed by integrating a convolutional neural network (CNN) with bidirectional long-short-term memory (LSTM) using multi-view attributes to train the proposed model. The PROCABLES model achieved an accuracy of 0.971 and 0.920 and the MCC 0.940 and 0.840 for the first and second-layer using the ten-fold cross-validation test, respectively. The predicted results anticipate that the proposed PROCABLES protocol outperformed the advanced computational predictors targeting promoters and their types. In summary, this research will provide useful hints for the recognition of large-scale promoters in particular and other DNA problems in general.
Collapse
Affiliation(s)
- Aqsa Amjad
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| | - Saeed Ahmed
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Kabir
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan.
| | - Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.
| |
Collapse
|
8
|
Arif M, Musleh S, Ghulam A, Fida H, Alqahtani Y, Alam T. StackDPPred: Multiclass prediction of defensin peptides using stacked ensemble learning with optimized features. Methods 2024; 230:129-139. [PMID: 39173785 DOI: 10.1016/j.ymeth.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Host defense or antimicrobial peptides (AMPs) are promising candidates for protecting host against microbial pathogens for example bacteria, virus, fungi, yeast. Defensins are the type of AMPs that act as potential therapeutic drug agent and perform vital role in various biological process. Conventional Experiments to identify defensin peptides (DPs) are time consuming and expensive. Thus, the shortcomings of wet lab experiments are leveraged by computational methods to accurately predict the functional types of DPs. In this paper, we aim to propose a novel multi-class ensemble-based prediction model called StackDPPred for identifying the properties of DPs. The peptide sequences are encoded using split amino acid composition (SAAC), segmented position specific scoring matrix (SegPSSM), histogram of oriented gradients-based PSSM (HOGPSSM) and feature extraction based graphical and statistical (FEGS) descriptors. Next, principal component analysis (PCA) is used to select the best subset of attributes. After that, the optimized features are fed into single machine learning and stacking-based ensemble classifiers. Furthermore, the ablation study demonstrates the robustness and efficacy of the stacking approach using reduced features for predicting DPs and their families. The proposed StackDPPred method improves the overall accuracy by 13.41% and 7.62% compared to existing DPs predictors iDPF-PseRAAC and iDEF-PseRAAC, respectively on validation test. Additionally, we applied the local interpretable model-agnostic explanations (LIME) algorithm to understand the contribution of selected features to the overall prediction. We believe, StackDPPred could serve as a valuable tool accelerating the screening of large-scale DPs and peptide-based drug discovery process.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Saleh Musleh
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Ali Ghulam
- Information Technology Centre, Sindh Agriculture University, Sindh, Pakistan
| | - Huma Fida
- Department of Microbiology, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
| | | | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.
| |
Collapse
|
9
|
Rathore AS, Choudhury S, Arora A, Tijare P, Raghava GPS. ToxinPred 3.0: An improved method for predicting the toxicity of peptides. Comput Biol Med 2024; 179:108926. [PMID: 39038391 DOI: 10.1016/j.compbiomed.2024.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Toxicity emerges as a prominent challenge in the design of therapeutic peptides, causing the failure of numerous peptides during clinical trials. In 2013, our group developed ToxinPred, a computational method that has been extensively adopted by the scientific community for predicting peptide toxicity. In this paper, we propose a refined variant of ToxinPred that showcases improved reliability and accuracy in predicting peptide toxicity. Initially, we utilized a similarity/alignment-based approach employing BLAST to predict toxic peptides, which yielded satisfactory accuracy; however, the method suffered from inadequate coverage. Subsequently, we employed a motif-based approach using MERCI software to uncover specific patterns or motifs that are exclusively observed in toxic peptides. The search for these motifs in peptides allowed us to predict toxic peptides with a high level of specificity with poor sensitivity. To overcome the coverage limitations, we developed alignment-free methods using machine/deep learning techniques to balance sensitivity and specificity of prediction. Deep learning model (ANN - LSTM with fixed sequence length) developed using one-hot encoding achieved a maximum AUROC of 0.93 with MCC of 0.71 on an independent dataset. Machine learning model (extra tree) developed using compositional features of peptides achieved a maximum AUROC of 0.95 with MCC of 0.78. We also developed large language models and achieved maximum AUC of 0.93 using ESM2-t33. Finally, we developed hybrid or ensemble methods combining two or more methods to enhance performance. Our specific hybrid method, which combines a motif-based approach with a machine learning-based model, achieved a maximum AUROC of 0.98 with MCC 0.81 on an independent dataset. In this study, all models were trained and tested on 80 % of data using five-fold cross-validation and evaluated on the remaining 20 % of data called independent dataset. The evaluation of all methods on an independent dataset revealed that the method proposed in this study exhibited better performance than existing methods. To cater to the needs of the scientific community, we have developed a standalone software, pip package and web-based server ToxinPred3 (https://github.com/raghavagps/toxinpred3 and https://webs.iiitd.edu.in/raghava/toxinpred3/).
Collapse
Affiliation(s)
- Anand Singh Rathore
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Akanksha Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Purva Tijare
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
10
|
Lopuszynski J, Wang J, Zahid M. Beyond Transduction: Anti-Inflammatory Effects of Cell Penetrating Peptides. Molecules 2024; 29:4088. [PMID: 39274936 PMCID: PMC11397606 DOI: 10.3390/molecules29174088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
One of the bottlenecks to bringing new therapies to the clinic has been a lack of vectors for delivering novel therapeutics in a targeted manner. Cell penetrating peptides (CPPs) have received a lot of attention and have been the subject of numerous developments since their identification nearly three decades ago. Known for their transduction abilities, they have generally been considered inert vectors. In this review, we present a schema for their classification, highlight what is known about their mechanism of transduction, and outline the existing literature as well as our own experience, vis a vis the intrinsic anti-inflammatory properties that certain CPPs exhibit. Given the inflammatory responses associated with viral vectors, CPPs represent a viable alternative to such vectors; furthermore, the anti-inflammatory properties of CPPs, mostly through inhibition of the NF-κB pathway, are encouraging. Much more work in relevant animal models, toxicity studies in large animal models, and ultimately human trials are needed before their potential is fully realized.
Collapse
Affiliation(s)
| | | | - Maliha Zahid
- Department of Cardiovascular Medicine, Guggenheim Gu 9-01B, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Yu Y, Gu M, Guo H, Deng Y, Chen D, Wang J, Wang C, Liu X, Yan W, Huang J. MuCoCP: a priori chemical knowledge-based multimodal contrastive learning pre-trained neural network for the prediction of cyclic peptide membrane penetration ability. Bioinformatics 2024; 40:btae473. [PMID: 39067027 PMCID: PMC11315609 DOI: 10.1093/bioinformatics/btae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
MOTIVATION There has been a burgeoning interest in cyclic peptide therapeutics due to their various outstanding advantages and strong potential for drug formation. However, it is undoubtedly costly and inefficient to use traditional wet lab methods to clarify their biological activities. Using artificial intelligence instead is a more energy-efficient and faster approach. MuCoCP aims to build a complete pre-trained model for extracting potential features of cyclic peptides, which can be fine-tuned to accurately predict cyclic peptide bioactivity on various downstream tasks. To maximize its effectiveness, we use a novel data augmentation method based on a priori chemical knowledge and multiple unsupervised training objective functions to greatly improve the information-grabbing ability of the model. RESULTS To assay the efficacy of the model, we conducted validation on the membrane-permeability of cyclic peptides which achieved an accuracy of 0.87 and R-squared of 0.503 on CycPeptMPDB using semi-supervised training and obtained an accuracy of 0.84 and R-squared of 0.384 using a model with frozen parameters on an external dataset. This result has achieved state-of-the-art, which substantiates the stability and generalization capability of MuCoCP. It means that MuCoCP can fully explore the high-dimensional information of cyclic peptides and make accurate predictions on downstream bioactivity tasks, which will serve as a guide for the future de novo design of cyclic peptide drugs and promote the development of cyclic peptide drugs. AVAILABILITY AND IMPLEMENTATION All code used in our proposed method can be found at https://github.com/lennonyu11234/MuCoCP.
Collapse
Affiliation(s)
- Yunxiang Yu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mengyun Gu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hai Guo
- The Second Hospital Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Yabo Deng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Danna Chen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
- Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Jianwei Wang
- Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Caixia Wang
- Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Xia Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjin Yan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinqi Huang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
- Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
12
|
Arif M, Musleh S, Fida H, Alam T. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Sci Rep 2024; 14:16992. [PMID: 39043738 PMCID: PMC11266708 DOI: 10.1038/s41598-024-67433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Anticancer peptides (ACPs) perform a promising role in discovering anti-cancer drugs. The growing research on ACPs as therapeutic agent is increasing due to its minimal side effects. However, identifying novel ACPs using wet-lab experiments are generally time-consuming, labor-intensive, and expensive. Leveraging computational methods for fast and accurate prediction of ACPs would harness the drug discovery process. Herein, a machine learning-based predictor, called PLMACPred, is developed for identifying ACPs from peptide sequence only. PLMACPred adopted a set of encoding schemes representing evolutionary-property, composition-property, and protein language model (PLM), i.e., evolutionary scale modeling (ESM-2)- and ProtT5-based embedding to encode peptides. Then, two-dimensional (2D) wavelet denoising (WD) was employed to remove the noise from extracted features. Finally, ensemble-based cascade deep forest (CDF) model was developed to identify ACP. PLMACPred model attained superior performance on all three benchmark datasets, namely, ACPmain, ACPAlter, and ACP740 over tenfold cross validation and independent dataset. PLMACPred outperformed the existing models and improved the prediction accuracy by 18.53%, 2.4%, 7.59% on ACPmain, ACPalter, ACP740 dataset, respectively. We showed that embedding from ProtT5 and ESM-2 was capable of capturing better contextual information from the entire sequence than the other encoding schemes for ACP prediction. For the explainability of proposed model, SHAP (SHapley Additive exPlanations) method was used to analyze the feature effect on the ACP prediction. A list of novel sequence motifs was proposed from the ACP sequence using MEME suites. We believe, PLMACPred will support in accelerating the discovery of novel ACPs as well as other activities of microbial peptides.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Saleh Musleh
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Huma Fida
- Department of Microbiology, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
13
|
Zhao N, Wu T, Wang W, Zhang L, Gong X. Review and Comparative Analysis of Methods and Advancements in Predicting Protein Complex Structure. Interdiscip Sci 2024; 16:261-288. [PMID: 38955920 DOI: 10.1007/s12539-024-00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 07/04/2024]
Abstract
Protein complexes perform diverse biological functions, and obtaining their three-dimensional structure is critical to understanding and grasping their functions. In many cases, it's not just two proteins interacting to form a dimer; instead, multiple proteins interact to form a multimer. Experimentally resolving protein complex structures can be quite challenging. Recently, there have been efforts and methods that build upon prior predictions of dimer structures to attempt to predict multimer structures. However, in comparison to monomeric protein structure prediction, the accuracy of protein complex structure prediction remains relatively low. This paper provides an overview of recent advancements in efficient computational models for predicting protein complex structures. We introduce protein-protein docking methods in detail and summarize their main ideas, applicable modes, and related information. To enhance prediction accuracy, other critical protein-related information is also integrated, such as predicting interchain residue contact, utilizing experimental data like cryo-EM experiments, and considering protein interactions and non-interactions. In addition, we comprehensively review computational approaches for end-to-end prediction of protein complex structures based on artificial intelligence (AI) technology and describe commonly used datasets and representative evaluation metrics in protein complexes. Finally, we analyze the formidable challenges faced in current protein complex structure prediction tasks, including the structure prediction of heteromeric complex, disordered regions in complex, antibody-antigen complex, and RNA-related complex, as well as the evaluation metrics for complex assessment. We hope that this work will provide comprehensive knowledge of complex structure predictions to contribute to future advanced predictions.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Tong Wu
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Wenda Wang
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Lunchuan Zhang
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
| | - Xinqi Gong
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China.
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
- Beijing Academy of Artificial Intelligence, Beijing, 100084, China.
| |
Collapse
|
14
|
Arif R, Kanwal S, Ahmed S, Kabir M. A Computational Predictor for Accurate Identification of Tumor Homing Peptides by Integrating Sequential and Deep BiLSTM Features. Interdiscip Sci 2024; 16:503-518. [PMID: 38733473 DOI: 10.1007/s12539-024-00628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 05/13/2024]
Abstract
Cancer remains a severe illness, and current research indicates that tumor homing peptides (THPs) play an important part in cancer therapy. The identification of THPs can provide crucial insights for drug-discovery and pharmaceutical industries as they allow for tailored medication delivery towards cancer cells. These peptides have a high affinity enabling particular receptors present upon tumor surfaces, allowing for the creation of precision medications that reduce off-target consequences and enhance cancer patient treatment results. Wet-lab techniques are considered essential tools for studying THPs; however, they're labor-extensive and time-consuming, therefore making prediction of THPs a challenging task for the researchers. Computational-techniques, on the other hand, are considered significant tools in identifying THPs according to the sequence data. Despite many strategies have been presented to predict new THP, there is still a need to develop a robust method with higher rates of success. In this paper, we developed a novel framework, THP-DF, for accurately identifying THPs on a large-scale. Firstly, the peptide sequences are encoded through various sequential features. Secondly, each feature is passed to BiLSTM and attention layers to extract simplified deep features. Finally, an ensemble-framework is formed via integrating sequential- and deep features which are fed to a support vector machine which with 10-fold cross-validation to carry to validate the efficiency. The experimental results showed that THP-DF worked better on both [Formula: see text] and [Formula: see text] datasets by achieving accuracy of > 95% which are higher than existing predictors both datasets. This indicates that the proposed predictor could be a beneficial tool to precisely and rapidly identify THPs and will contribute to the cutting-edge cancer treatment strategies and pharmaceuticals.
Collapse
Affiliation(s)
- Roha Arif
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Sameera Kanwal
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Saeed Ahmed
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Muhammad Kabir
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan.
| |
Collapse
|
15
|
Arif M, Fang G, Ghulam A, Musleh S, Alam T. DPI_CDF: druggable protein identifier using cascade deep forest. BMC Bioinformatics 2024; 25:145. [PMID: 38580921 PMCID: PMC11334562 DOI: 10.1186/s12859-024-05744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Drug targets in living beings perform pivotal roles in the discovery of potential drugs. Conventional wet-lab characterization of drug targets is although accurate but generally expensive, slow, and resource intensive. Therefore, computational methods are highly desirable as an alternative to expedite the large-scale identification of druggable proteins (DPs); however, the existing in silico predictor's performance is still not satisfactory. METHODS In this study, we developed a novel deep learning-based model DPI_CDF for predicting DPs based on protein sequence only. DPI_CDF utilizes evolutionary-based (i.e., histograms of oriented gradients for position-specific scoring matrix), physiochemical-based (i.e., component protein sequence representation), and compositional-based (i.e., normalized qualitative characteristic) properties of protein sequence to generate features. Then a hierarchical deep forest model fuses these three encoding schemes to build the proposed model DPI_CDF. RESULTS The empirical outcomes on 10-fold cross-validation demonstrate that the proposed model achieved 99.13 % accuracy and 0.982 of Matthew's-correlation-coefficient (MCC) on the training dataset. The generalization power of the trained model is further examined on an independent dataset and achieved 95.01% of maximum accuracy and 0.900 MCC. When compared to current state-of-the-art methods, DPI_CDF improves in terms of accuracy by 4.27% and 4.31% on training and testing datasets, respectively. We believe, DPI_CDF will support the research community to identify druggable proteins and escalate the drug discovery process. AVAILABILITY The benchmark datasets and source codes are available in GitHub: http://github.com/Muhammad-Arif-NUST/DPI_CDF .
Collapse
Affiliation(s)
- Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Ge Fang
- State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing 210023, P. R. China, Nanjing 210023, China
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bankok, 10700, Thailand
| | - Ali Ghulam
- Information Technology Centre, Sindh Agriculture University, Sindh, Pakistan
| | - Saleh Musleh
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
16
|
Bian J, Liu X, Dong G, Hou C, Huang S, Zhang D. ACP-ML: A sequence-based method for anticancer peptide prediction. Comput Biol Med 2024; 170:108063. [PMID: 38301519 DOI: 10.1016/j.compbiomed.2024.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Cancer is a serious malignant tumor and is difficult to cure. Chemotherapy, as a primary treatment for cancer, causes significant harm to normal cells in the body and is often accompanied by serious side effects. Recently, anti-cancer peptides (ACPs) as a type of protein for treating cancers dominated research into the development of new anti-tumor drugs because of their ability to specifically target and destroy cancer cells. The screening of proteins with cancer-inhibiting properties from a large pool of proteins is key to the development of anti-tumor drugs. However, it is expensive and inefficient to accurately identify protein functions only through biological experiments due to their complex structure. Therefore, we propose a new prediction model ACP-ML to effectively predict ACPs. In terms of feature extraction, DPC, PseAAC, CTDC, CTDT and CS-Pse-PSSM features were used and the most optimal feature set was selected by comparing combinations of these features. Then, a two-step feature selection process using MRMD and RFE algorithms was performed to determine the most crucial features from the most optimal feature set for identifying ACPs. Furthermore, we assessed the classification accuracy of single learning models and different strategies-based ensemble models through ten-fold cross-validation. Ultimately, a voting-based ensemble learning method is developed to predict ACPs. To validate its effectiveness, two independent test sets were used to perform tests, achieving accuracy of 90.891 % and 92.578 % respectively. Compared with existing anticancer peptide prediction algorithms, the proposed feature processing method is more effective, and the proposed ensemble model ACP-ML exhibits stronger generalization capability and higher accuracy.
Collapse
Affiliation(s)
- Jilong Bian
- Northeast Forestry University, College of Computer and Control Engineering, Harbin, Heilongjiang, China.
| | - Xuan Liu
- Northeast Forestry University, College of Computer and Control Engineering, Harbin, Heilongjiang, China
| | - Guanghui Dong
- Northeast Forestry University, College of Computer and Control Engineering, Harbin, Heilongjiang, China
| | - Chang Hou
- Northeast Forestry University, College of Computer and Control Engineering, Harbin, Heilongjiang, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
17
|
Schaduangrat N, Anuwongcharoen N, Charoenkwan P, Shoombuatong W. DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists. J Cheminform 2023; 15:50. [PMID: 37149650 PMCID: PMC10163717 DOI: 10.1186/s13321-023-00721-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/08/2023] [Indexed: 05/08/2023] Open
Abstract
Drug resistance represents a major obstacle to therapeutic innovations and is a prevalent feature in prostate cancer (PCa). Androgen receptors (ARs) are the hallmark therapeutic target for prostate cancer modulation and AR antagonists have achieved great success. However, rapid emergence of resistance contributing to PCa progression is the ultimate burden of their long-term usage. Hence, the discovery and development of AR antagonists with capability to combat the resistance, remains an avenue for further exploration. Therefore, this study proposes a novel deep learning (DL)-based hybrid framework, named DeepAR, to accurately and rapidly identify AR antagonists by using only the SMILES notation. Specifically, DeepAR is capable of extracting and learning the key information embedded in AR antagonists. Firstly, we established a benchmark dataset by collecting active and inactive compounds against AR from the ChEMBL database. Based on this dataset, we developed and optimized a collection of baseline models by using a comprehensive set of well-known molecular descriptors and machine learning algorithms. Then, these baseline models were utilized for creating probabilistic features. Finally, these probabilistic features were combined and used for the construction of a meta-model based on a one-dimensional convolutional neural network. Experimental results indicated that DeepAR is a more accurate and stable approach for identifying AR antagonists in terms of the independent test dataset, by achieving an accuracy of 0.911 and MCC of 0.823. In addition, our proposed framework is able to provide feature importance information by leveraging a popular computational approach, named SHapley Additive exPlanations (SHAP). In the meanwhile, the characterization and analysis of potential AR antagonist candidates were achieved through the SHAP waterfall plot and molecular docking. The analysis inferred that N-heterocyclic moieties, halogenated substituents, and a cyano functional group were significant determinants of potential AR antagonists. Lastly, we implemented an online web server by using DeepAR (at http://pmlabstack.pythonanywhere.com/DeepAR ). We anticipate that DeepAR could be a useful computational tool for community-wide facilitation of AR candidates from a large number of uncharacterized compounds.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Nuttapat Anuwongcharoen
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
18
|
He Z, Zhang L, Wang H. An initial prediction and fine-tuning model based on improving GCN for 3D human motion prediction. Front Comput Neurosci 2023; 17:1145209. [PMID: 37089134 PMCID: PMC10116871 DOI: 10.3389/fncom.2023.1145209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
Human motion prediction is one of the fundamental studies of computer vision. Much work based on deep learning has shown impressive performance for it in recent years. However, long-term prediction and human skeletal deformation are still challenging tasks for human motion prediction. For accurate prediction, this paper proposes a GCN-based two-stage prediction method. We train a prediction model in the first stage. Using multiple cascaded spatial attention graph convolution layers (SAGCL) to extract features, the prediction model generates an initial motion sequence of future actions based on the observed pose. Since the initial pose generated in the first stage often deviates from natural human body motion, such as a motion sequence in which the length of a bone is changed. So the task of the second stage is to fine-tune the predicted pose and make it closer to natural motion. We present a fine-tuning model including multiple cascaded causally temporal-graph convolution layers (CT-GCL). We apply the spatial coordinate error of joints and bone length error as loss functions to train the fine-tuning model. We validate our model on Human3.6m and CMU-MoCap datasets. Extensive experiments show that the two-stage prediction method outperforms state-of-the-art methods. The limitations of proposed methods are discussed as well, hoping to make a breakthrough in future exploration.
Collapse
Affiliation(s)
- Zhiquan He
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China
- Guangdong Multimedia Information Service Engineering Technology Research Center, Shenzhen University, Shenzhen, China
- *Correspondence: Zhiquan He
| | - Lujun Zhang
- Guangdong Multimedia Information Service Engineering Technology Research Center, Shenzhen University, Shenzhen, China
| | - Hengyou Wang
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
19
|
He Z, Zheng D, Wang H. Accurate few-shot object counting with Hough matching feature enhancement. Front Comput Neurosci 2023; 17:1145219. [PMID: 37065544 PMCID: PMC10098187 DOI: 10.3389/fncom.2023.1145219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionGiven some exemplars, few-shot object counting aims to count the corresponding class objects in query images. However, when there are many target objects or background interference in the query image, some target objects may have occlusion and overlap, which causes a decrease in counting accuracy.MethodsTo overcome the problem, we propose a novel Hough matching feature enhancement network. First, we extract the image feature with a fixed convolutional network and refine it through local self-attention. And we design an exemplar feature aggregation module to enhance the commonality of the exemplar feature. Then, we build a Hough space to vote for candidate object regions. The Hough matching outputs reliable similarity maps between exemplars and the query image. Finally, we augment the query feature with exemplar features according to the similarity maps, and we use a cascade structure to further enhance the query feature.ResultsExperiment results on FSC-147 show that our network performs best compared to the existing methods, and the mean absolute counting error on the test set improves from 14.32 to 12.74.DiscussionAblation experiments demonstrate that Hough matching helps to achieve more accurate counting compared with previous matching methods.
Collapse
Affiliation(s)
- Zhiquan He
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China
- Guangdong Multimedia Information Service Engineering Technology Research Center, Shenzhen University, Shenzhen, China
- *Correspondence: Zhiquan He
| | - Donghong Zheng
- Guangdong Multimedia Information Service Engineering Technology Research Center, Shenzhen University, Shenzhen, China
| | - Hengyou Wang
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
20
|
Identify Bitter Peptides by Using Deep Representation Learning Features. Int J Mol Sci 2022; 23:ijms23147877. [PMID: 35887225 PMCID: PMC9315524 DOI: 10.3390/ijms23147877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
A bitter taste often identifies hazardous compounds and it is generally avoided by most animals and humans. Bitterness of hydrolyzed proteins is caused by the presence of bitter peptides. To improve palatability, bitter peptides need to be identified experimentally in a time-consuming and expensive process, before they can be removed or degraded. Here, we report the development of a machine learning prediction method, iBitter-DRLF, which is based on a deep learning pre-trained neural network feature extraction method. It uses three sequence embedding techniques, soft symmetric alignment (SSA), unified representation (UniRep), and bidirectional long short-term memory (BiLSTM). These were initially combined into various machine learning algorithms to build several models. After optimization, the combined features of UniRep and BiLSTM were finally selected, and the model was built in combination with a light gradient boosting machine (LGBM). The results showed that the use of deep representation learning greatly improves the ability of the model to identify bitter peptides, achieving accurate prediction based on peptide sequence data alone. By helping to identify bitter peptides, iBitter-DRLF can help research into improving the palatability of peptide therapeutics and dietary supplements in the future. A webserver is available, too.
Collapse
|