1
|
Zhang C, Li Y, Dong Y, Chen W, Yu C. Prediction of miRNA-disease associations based on PCA and cascade forest. BMC Bioinformatics 2024; 25:386. [PMID: 39701957 DOI: 10.1186/s12859-024-05999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND As a key non-coding RNA molecule, miRNA profoundly affects gene expression regulation and connects to the pathological processes of several kinds of human diseases. However, conventional experimental methods for validating miRNA-disease associations are laborious. Consequently, the development of efficient and reliable computational prediction models is crucial for the identification and validation of these associations. RESULTS In this research, we developed the PCACFMDA method to predict the potential associations between miRNAs and diseases. To construct a multidimensional feature matrix, we consider the fusion similarities of miRNA and disease and miRNA-disease pairs. We then use principal component analysis(PCA) to reduce data complexity and extract low-dimensional features. Subsequently, a tuned cascade forest is used to mine the features and output prediction scores deeply. The results of the 5-fold cross-validation using the HMDD v2.0 database indicate that the PCACFMDA algorithm achieved an AUC of 98.56%. Additionally, we perform case studies on breast, esophageal and lung neoplasms. The findings revealed that the top 50 miRNAs most strongly linked to each disease have been validated. CONCLUSIONS Based on PCA and optimized cascade forests, we propose the PCACFMDA model for predicting undiscovered miRNA-disease associations. The experimental results demonstrate superior prediction performance and commendable stability. Consequently, the PCACFMDA is a potent instrument for in-depth exploration of miRNA-disease associations.
Collapse
Affiliation(s)
- Chuanlei Zhang
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yubo Li
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yinglun Dong
- Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Chen
- Computer Science, China University of Mining and Technology, Xuzhou, 221116, China
| | - Changqing Yu
- Electronic Information, Xijing University, Xi'an, 710123, China.
| |
Collapse
|
2
|
Sheng N, Xie X, Wang Y, Huang L, Zhang S, Gao L, Wang H. A Survey of Deep Learning for Detecting miRNA- Disease Associations: Databases, Computational Methods, Challenges, and Future Directions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:328-347. [PMID: 38194377 DOI: 10.1109/tcbb.2024.3351752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
MicroRNAs (miRNAs) are an important class of non-coding RNAs that play an essential role in the occurrence and development of various diseases. Identifying the potential miRNA-disease associations (MDAs) can be beneficial in understanding disease pathogenesis. Traditional laboratory experiments are expensive and time-consuming. Computational models have enabled systematic large-scale prediction of potential MDAs, greatly improving the research efficiency. With recent advances in deep learning, it has become an attractive and powerful technique for uncovering novel MDAs. Consequently, numerous MDA prediction methods based on deep learning have emerged. In this review, we first summarize publicly available databases related to miRNAs and diseases for MDA prediction. Next, we outline commonly used miRNA and disease similarity calculation and integration methods. Then, we comprehensively review the 48 existing deep learning-based MDA computation methods, categorizing them into classical deep learning and graph neural network-based techniques. Subsequently, we investigate the evaluation methods and metrics that are frequently used to assess MDA prediction performance. Finally, we discuss the performance trends of different computational methods, point out some problems in current research, and propose 9 potential future research directions. Data resources and recent advances in MDA prediction methods are summarized in the GitHub repository https://github.com/sheng-n/DL-miRNA-disease-association-methods.
Collapse
|
3
|
Gao S, Kuang Z, Duan T, Deng L. DEJKMDR: miRNA-disease association prediction method based on graph convolutional network. Front Med (Lausanne) 2023; 10:1234050. [PMID: 37780568 PMCID: PMC10536249 DOI: 10.3389/fmed.2023.1234050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Numerous studies have shown that miRNAs play a crucial role in the investigation of complex human diseases. Identifying the connection between miRNAs and diseases is crucial for advancing the treatment of complex diseases. However, traditional methods are frequently constrained by the small sample size and high cost, so computational simulations are urgently required to rapidly and accurately forecast the potential correlation between miRNA and disease. In this paper, the DEJKMDR, a graph convolutional network (GCN)-based miRNA-disease association prediction model is proposed. The novelty of this model lies in the fact that DEJKMDR integrates biomolecular information on miRNA and illness, including functional miRNA similarity, disease semantic similarity, and miRNA and disease similarity, according to their Gaussian interaction attribute. In order to minimize overfitting, some edges are randomly destroyed during the training phase after DropEdge has been used to regularize the edges. JK-Net, meanwhile, is employed to combine various domain scopes through the adaptive learning of nodes in various placements. The experimental results demonstrate that this strategy has superior accuracy and dependability than previous algorithms in terms of predicting an unknown miRNA-disease relationship. In a 10-fold cross-validation, the average AUC of DEJKMDR is determined to be 0.9772.
Collapse
Affiliation(s)
- Shiyuan Gao
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Tao Duan
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
4
|
Ma Z, Kuang Z, Deng L. NGCICM: A Novel Deep Learning-Based Method for Predicting circRNA-miRNA Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3080-3092. [PMID: 37027645 DOI: 10.1109/tcbb.2023.3248787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The circRNAs and miRNAs play an important role in the development of human diseases, and they can be widely used as biomarkers of diseases for disease diagnosis. In particular, circRNAs can act as sponge adsorbers for miRNAs and act together in certain diseases. However, the associations between the vast majority of circRNAs and diseases and between miRNAs and diseases remain unclear. Computational-based approaches are urgently needed to discover the unknown interactions between circRNAs and miRNAs. In this paper, we propose a novel deep learning algorithm based on Node2vec and Graph ATtention network (GAT), Conditional Random Field (CRF) layer and Inductive Matrix Completion (IMC) to predict circRNAs and miRNAs interactions (NGCICM). We construct a GAT-based encoder for deep feature learning by fusing the talking-heads attention mechanism and the CRF layer. The IMC-based decoder is also constructed to obtain interaction scores. The Area Under the receiver operating characteristic Curve (AUC) of the NGCICM method is 0.9697, 0.9932 and 0.9980, and the Area Under the Precision-Recall curve (AUPR) is 0.9671, 0.9935 and 0.9981, respectively, using 2-fold, 5-fold and 10-fold Cross-Validation (CV) as the benchmark. The experimental results confirm the effectiveness of the NGCICM algorithm in predicting the interactions between circRNAs and miRNAs.
Collapse
|
5
|
Ergün S, Sankaranarayanan R, Petrović N. Clinically informative microRNAs for SARS-CoV-2 infection. Epigenomics 2023; 15:705-716. [PMID: 37661862 PMCID: PMC10476648 DOI: 10.2217/epi-2023-0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
COVID-19 is a viral respiratory infection induced by the newly discovered coronavirus SARS-CoV-2. miRNA is an example of a strong and direct regulator of a gene's transcriptional activity. The interaction between miRNAs and their target molecules is responsible for homeostasis. Virus-derived and host-derived miRNAs are involved in the activity of hiding from immune system cells, inducing the inflammatory reaction through interplay with associated genes, during SARS-COV-2 infection. Interest in miRNAs has raised the comprehension of the machinery and pathophysiology of SARS-COV-2 infection. In this review, the effects and biological roles of miRNAs on SARS-CoV-2 pathogenicity and life cycle are described. The therapeutic potential of miRNAs against SARS-CoV-2 infection are also mentioned.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | | | - Nina Petrović
- Laboratory for Radiobiology & Molecular Genetics, Department of Health & Environment, ‘VINČA’ Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, Belgrade, 11001, Serbia
- Department of Experimental Oncology, Institute for Oncology & Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| |
Collapse
|
6
|
Liu J, Kuang Z, Deng L. GCNPCA: miRNA-Disease Associations Prediction Algorithm Based on Graph Convolutional Neural Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1041-1052. [PMID: 36049014 DOI: 10.1109/tcbb.2022.3203564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A growing number of studies have confirmed the important role of microRNAs (miRNAs) in human diseases and the aberrant expression of miRNAs affects the onset and progression of human diseases. The discovery of disease-associated miRNAs as new biomarkers promote the progress of disease pathology and clinical medicine. However, only a small proportion of miRNA-disease correlations have been validated by biological experiments. And identifying miRNA-disease associations through biological experiments is both expensive and inefficient. Therefore, it is important to develop efficient and highly accurate computational methods to predict miRNA-disease associations. A miRNA-disease associations prediction algorithm based on Graph Convolutional neural Networks and Principal Component Analysis (GCNPCA) is proposed in this paper. Specifically, the deep topological structure information is extracted from the heterogeneous network composed of miRNA and disease nodes by a Graph Convolutional neural Network (GCN) with an additional attention mechanism. The internal attribute information of the nodes is obtained by the Principal Component Analysis (PCA). Then, the topological structure information and the node attribute information are combined to construct comprehensive feature descriptors. Finally, the Random Forest (RF) is used to train and classify these feature descriptors. In the five-fold cross-validation experiment, the AUC and AUPR for the GCNPCA algorithm are 0.983 and 0.988 respectively.
Collapse
|
7
|
Duan T, Kuang Z, Deng L. SVMMDR: Prediction of miRNAs-drug resistance using support vector machines based on heterogeneous network. Front Oncol 2022; 12:987609. [PMID: 36338674 PMCID: PMC9632662 DOI: 10.3389/fonc.2022.987609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, the miRNA is considered as a potential high-value therapeutic target because of its complex and delicate mechanism of gene regulation. The abnormal expression of miRNA can cause drug resistance, affecting the therapeutic effect of the disease. Revealing the associations between miRNAs-drug resistance can help in the design of effective drugs or possible drug combinations. However, current conventional experiments for identification of miRNAs-drug resistance are time-consuming and high-cost. Therefore, it’s of pretty realistic value to develop an accurate and efficient computational method to predicting miRNAs-drug resistance. In this paper, a method based on the Support Vector Machines (SVM) to predict the association between MiRNA and Drug Resistance (SVMMDR) is proposed. The SVMMDR integrates miRNAs-drug resistance association, miRNAs sequence similarity, drug chemical structure similarity and other similarities, extracts path-based Hetesim features, and obtains inclined diffusion feature through restart random walk. By combining the multiple feature, the prediction score between miRNAs and drug resistance is obtained based on the SVM. The innovation of the SVMMDR is that the inclined diffusion feature is obtained by inclined restart random walk, the node information and path information in heterogeneous network are integrated, and the SVM is used to predict potential miRNAs-drug resistance associations. The average AUC of SVMMDR obtained is 0.978 in 10-fold cross-validation.
Collapse
|
8
|
Ma Z, Kuang Z, Deng L. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network. BMC Bioinformatics 2021; 22:551. [PMID: 34772332 PMCID: PMC8588735 DOI: 10.1186/s12859-021-04467-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The existing studies show that circRNAs can be used as a biomarker of diseases and play a prominent role in the treatment and diagnosis of diseases. However, the relationships between the vast majority of circRNAs and diseases are still unclear, and more experiments are needed to study the mechanism of circRNAs. Nowadays, some scholars use the attributes between circRNAs and diseases to study and predict their associations. Nonetheless, most of the existing experimental methods use less information about the attributes of circRNAs, which has a certain impact on the accuracy of the final prediction results. On the other hand, some scholars also apply experimental methods to predict the associations between circRNAs and diseases. But such methods are usually expensive and time-consuming. Based on the above shortcomings, follow-up research is needed to propose a more efficient calculation-based method to predict the associations between circRNAs and diseases. RESULTS In this study, a novel algorithm (method) is proposed, which is based on the Graph Convolutional Network (GCN) constructed with Random Walk with Restart (RWR) and Principal Component Analysis (PCA) to predict the associations between circRNAs and diseases (CRPGCN). In the construction of CRPGCN, the RWR algorithm is used to improve the similarity associations of the computed nodes with their neighbours. After that, the PCA method is used to dimensionality reduction and extract features, it makes the connection between circRNAs with higher similarity and diseases closer. Finally, The GCN algorithm is used to learn the features between circRNAs and diseases and calculate the final similarity scores, and the learning datas are constructed from the adjacency matrix, similarity matrix and feature matrix as a heterogeneous adjacency matrix and a heterogeneous feature matrix. CONCLUSIONS After 2-fold cross-validation, 5-fold cross-validation and 10-fold cross-validation, the area under the ROC curve of the CRPGCN is 0.9490, 0.9720 and 0.9722, respectively. The CRPGCN method has a valuable effect in predict the associations between circRNAs and diseases.
Collapse
Affiliation(s)
- Zhihao Ma
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|