1
|
Smyl D, Tallman TN, Homa L, Flournoy C, Hamilton SJ, Wertz J. Physics Informed Neural Networks for Electrical Impedance Tomography. Neural Netw 2025; 188:107410. [PMID: 40174355 DOI: 10.1016/j.neunet.2025.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
Electrical Impedance Tomography (EIT) is an imaging modality used to reconstruct the internal conductivity distribution of a domain via boundary voltage measurements. In this paper, we present a novel EIT approach for integrated sensing of composite structures utilizing Physics Informed Neural Networks (PINNs). Unlike traditional data-driven only models, PINNs incorporate underlying physical principles governing EIT directly into the learning process, enabling precise and rapid reconstructions. We demonstrate the effectiveness of PINNs with a variety of physical constraints for integrated sensing. The proposed approach has potential to enhance material characterization and condition monitoring, offering a robust alternative to classical EIT approaches.
Collapse
Affiliation(s)
- Danny Smyl
- Georgia Institute of Technology, Atlanta, GA, 30332, United States.
| | | | - Laura Homa
- University of Dayton Research Institute, Dayton, OH, 45469, United States; Air Force Research Laboratory, WPAFB, OH, 45433, United States
| | - Chenoa Flournoy
- University of Dayton Research Institute, Dayton, OH, 45469, United States
| | | | - John Wertz
- Air Force Research Laboratory, WPAFB, OH, 45433, United States
| |
Collapse
|
2
|
Liu Z, Fang Y, Li C, Wu H, Liu Y, Shen D, Cui Z. Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1083-1097. [PMID: 39365719 DOI: 10.1109/tmi.2024.3473970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging. Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image, leading to considerable radiation exposure. This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses. While recent advances, including deep learning and neural rendering algorithms, have made strides in this area, these methods either produce unsatisfactory results or suffer from time inefficiency of individual optimization. In this paper, we introduce a novel geometry-aware encoder-decoder framework to solve this problem. Our framework starts by encoding multi-view 2D features from various 2D X-ray projections with a 2D CNN encoder. Leveraging the geometry of CBCT scanning, it then back-projects the multi-view 2D features into the 3D space to formulate a comprehensive volumetric feature map, followed by a 3D CNN decoder to recover 3D CBCT image. Importantly, our approach respects the geometric relationship between 3D CBCT image and its 2D X-ray projections during feature back projection stage, and enjoys the prior knowledge learned from the data population. This ensures its adaptability in dealing with extremely sparse view inputs without individual training, such as scenarios with only 5 or 10 X-ray projections. Extensive evaluations on two simulated datasets and one real-world dataset demonstrate exceptional reconstruction quality and time efficiency of our method.
Collapse
|
3
|
Xu D, Lyu Q, Ruan D, Sheng K. A Two-Step Framework for Multi-Material Decomposition of Dual Energy Computed Tomography from Projection Domain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-7. [PMID: 40039390 DOI: 10.1109/embc53108.2024.10782757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND AND PURPOSE Dual-energy computed tomography (DECT) utilizes separate X-ray energy spectra to improve multi-material decomposition (MMD) for various diagnostic applications. However accurate decomposing more than two types of material remains challenging using conventional methods. Deep learning (DL) methods have shown promise to improve the MMD performance, but typical approaches of conducing DL-MMD in the image domain fail to fully utilize projection information or are under computationally inefficient iterative setup. In this work, we present a clinical-applicable MMD (> 2) framework - rFast-MMDNet, operating with raw projection data in non-recursive setup, for breast tissue differentiation. METHODS rFast-MMDNet is a two-stage algorithm, including stage-one SinoNet to perform dual energy projection decomposition on tissue sinograms and stage-two FBP-DenoiseNet to perform domain adaptation and image post-processing. rFast-MMDNet was tested on a 2022 DL-Spectral-Challenge dataset, which includes 1000 pairs of training, 10 pairs of validation, and 100 pairs of testing images simulating dual energy fast kVp-switching fan beam CT projections of breast phantoms. MMD for breast fibroglandular, adipose tissues and calcification was performed. The two stages of rFast-MMDNet were evaluated separately and then compared with four noniterative reference methods including a direct inversion method (AA-MMD), an image domain DL method (ID-UNet), AA-MMD/ID-UNet + DenoiseNet and a sinogram domain DL method (Triple-CBCT). RESULTS Our results show that models trained from information stored in DE transmission domain can yield high-fidelity decomposition with averaged RMSE, MAE, negative PSNR, and SSIM of 0.004 ± 0, 0.001 ± 0, -45.027 ± 0.542, and 0.002±0 benchmarking to the ground truth, respectively. The inference time of rFast-MMDNet is < +1s. All DL methods generally led to more accurate MMD than AA-MMD. rFast-MMDNet outperformed Triple-CBCT, but both are superior to the image-domain based methods. CONCLUSIONS A fast, robust, intuitive, and interpretable work-flow is presented to facilitate an efficient and precise MMD with input from projection domain.
Collapse
|
4
|
Ylisiurua S, Sipola A, Nieminen MT, Brix MAK. Deep learning enables time-efficient soft tissue enhancement in CBCT: Proof-of-concept study for dentomaxillofacial applications. Phys Med 2024; 117:103184. [PMID: 38016216 DOI: 10.1016/j.ejmp.2023.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/06/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
PURPOSE The use of iterative and deep learning reconstruction methods, which would allow effective noise reduction, is limited in cone-beam computed tomography (CBCT). As a consequence, the visibility of soft tissues is limited with CBCT. The study aimed to improve this issue through time-efficient deep learning enhancement (DLE) methods. METHODS Two DLE networks, UNIT and U-Net, were trained with simulated CBCT data. The performance of the networks was tested with three different test data sets. The quantitative evaluation measured the structural similarity index measure (SSIM) and the peak signal-to-noise ratio (PSNR) of the DLE reconstructions with respect to the ground truth iterative reconstruction method. In the second assessment, a dentomaxillofacial radiologist assessed the resolution of hard tissue structures, visibility of soft tissues, and overall image quality of real patient data using the Likert scale. Finally, the technical image quality was determined using modulation transfer function, noise power spectrum, and noise magnitude analyses. RESULTS The study demonstrated that deep learning CBCT denoising is feasible and time efficient. The DLE methods, trained with simulated CBCT data, generalized well, and DLE provided quantitatively (SSIM/PSNR) and visually similar noise-reduction as conventional IR, but with faster processing time. The DLE methods improved soft tissue visibility compared to the conventional Feldkamp-Davis-Kress (FDK) algorithm through noise reduction. However, in hard tissue quantification tasks, the radiologist preferred the FDK over the DLE methods. CONCLUSION Post-reconstruction DLE allowed feasible reconstruction times while yielding improvements in soft tissue visibility in each dataset.
Collapse
Affiliation(s)
- Sampo Ylisiurua
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu 90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90220, Finland.
| | - Annina Sipola
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu 90220, Finland; Department of Dental Imaging, Oulu University Hospital, Oulu 90220, Finland; Research Unit of Oral Health Sciences, University of Oulu, Oulu 90220, Finland.
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu 90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90220, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu 90220, Finland.
| | - Mikael A K Brix
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu 90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90220, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu 90220, Finland.
| |
Collapse
|
5
|
Moriakov N, Sonke JJ, Teuwen J. End-to-end memory-efficient reconstruction for cone beam CT. Med Phys 2023; 50:7579-7593. [PMID: 37846969 DOI: 10.1002/mp.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Cone beam computed tomography (CBCT) plays an important role in many medical fields nowadays. Unfortunately, the potential of this imaging modality is hampered by lower image quality compared to the conventional CT, and producing accurate reconstructions remains challenging. A lot of recent research has been directed towards reconstruction methods relying on deep learning, which have shown great promise for various imaging modalities. However, practical application of deep learning to CBCT reconstruction is complicated by several issues, such as exceedingly high memory costs of deep learning methods when working with fully 3D data. Additionally, deep learning methods proposed in the literature are often trained and evaluated only on data from a specific region of interest, thus raising concerns about possible lack of generalization to other regions. PURPOSE In this work, we aim to address these limitations and propose LIRE: a learned invertible primal-dual iterative scheme for CBCT reconstruction. METHODS LIRE is a learned invertible primal-dual iterative scheme for CBCT reconstruction, wherein we employ a U-Net architecture in each primal block and a residual convolutional neural network (CNN) architecture in each dual block. Memory requirements of the network are substantially reduced while preserving its expressive power through a combination of invertible residual primal-dual blocks and patch-wise computations inside each of the blocks during both forward and backward pass. These techniques enable us to train on data with isotropic 2 mm voxel spacing, clinically-relevant projection count and detector panel resolution on current hardware with 24 GB video random access memory (VRAM). RESULTS Two LIRE models for small and for large field-of-view (FoV) setting were trained and validated on a set of 260 + 22 thorax CT scans and tested using a set of 142 thorax CT scans plus an out-of-distribution dataset of 79 head and neck CT scans. For both settings, our method surpasses the classical methods and the deep learning baselines on both test sets. On the thorax CT set, our method achieves peak signal-to-noise ratio (PSNR) of 33.84 ± 2.28 for the small FoV setting and 35.14 ± 2.69 for the large FoV setting; U-Net baseline achieves PSNR of 33.08 ± 1.75 and 34.29 ± 2.71 respectively. On the head and neck CT set, our method achieves PSNR of 39.35 ± 1.75 for the small FoV setting and 41.21 ± 1.41 for the large FoV setting; U-Net baseline achieves PSNR of 33.08 ± 1.75 and 34.29 ± 2.71 respectively. Additionally, we demonstrate that LIRE can be finetuned to reconstruct high-resolution CBCT data with the same geometry but 1 mm voxel spacing and higher detector panel resolution, where it outperforms the U-Net baseline as well. CONCLUSIONS Learned invertible primal-dual schemes with additional memory optimizations can be trained to reconstruct CBCT volumes directly from the projection data with clinically-relevant geometry and resolution. Such methods can offer better reconstruction quality and generalization compared to classical deep learning baselines.
Collapse
Affiliation(s)
- Nikita Moriakov
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jonas Teuwen
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
6
|
Kim K, Lim CY, Shin J, Chung MJ, Jung YG. Enhanced artificial intelligence-based diagnosis using CBCT with internal denoising: Clinical validation for discrimination of fungal ball, sinusitis, and normal cases in the maxillary sinus. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107708. [PMID: 37473588 DOI: 10.1016/j.cmpb.2023.107708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND OBJECTIVE The cone-beam computed tomography (CBCT) provides three-dimensional volumetric imaging of a target with low radiation dose and cost compared with conventional computed tomography, and it is widely used in the detection of paranasal sinus disease. However, it lacks the sensitivity to detect soft tissue lesions owing to reconstruction constraints. Consequently, only physicians with expertise in CBCT reading can distinguish between inherent artifacts or noise and diseases, restricting the use of this imaging modality. The development of artificial intelligence (AI)-based computer-aided diagnosis methods for CBCT to overcome the shortage of experienced physicians has attracted substantial attention. However, advanced AI-based diagnosis addressing intrinsic noise in CBCT has not been devised, discouraging the practical use of AI solutions for CBCT. We introduce the development of AI-based computer-aided diagnosis for CBCT considering the intrinsic imaging noise and evaluate its efficacy and implications. METHODS We propose an AI-based computer-aided diagnosis method using CBCT with a denoising module. This module is implemented before diagnosis to reconstruct the internal ground-truth full-dose scan corresponding to an input CBCT image and thereby improve the diagnostic performance. The proposed method is model agnostic and compatible with various existing and future AI-based denoising or diagnosis models. RESULTS The external validation results for the unified diagnosis of sinus fungal ball, chronic rhinosinusitis, and normal cases show that the proposed method improves the micro-, macro-average area under the curve, and accuracy by 7.4, 5.6, and 9.6% (from 86.2, 87.0, and 73.4 to 93.6, 92.6, and 83.0%), respectively, compared with a baseline while improving human diagnosis accuracy by 11% (from 71.7 to 83.0%), demonstrating technical differentiation and clinical effectiveness. In addition, the physician's ability to evaluate the AI-derived diagnosis results may be enhanced compared with existing solutions. CONCLUSION This pioneering study on AI-based diagnosis using CBCT indicates that denoising can improve diagnostic performance and reader interpretability in images from the sinonasal area, thereby providing a new approach and direction to radiographic image reconstruction regarding the development of AI-based diagnostic solutions. Furthermore, we believe that the performance enhancement will expedite the adoption of automated diagnostic solutions using CBCT, especially in locations with a shortage of skilled clinicians and limited access to high-dose scanning.
Collapse
Affiliation(s)
- Kyungsu Kim
- Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chae Yeon Lim
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joongbo Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung Jin Chung
- Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Gi Jung
- Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Hsu KT, Guan S, Chitnis PV. Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation. PHOTOACOUSTICS 2023; 29:100452. [PMID: 36700132 PMCID: PMC9867977 DOI: 10.1016/j.pacs.2023.100452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Iterative reconstruction has demonstrated superior performance in medical imaging under compressed, sparse, and limited-view sensing scenarios. However, iterative reconstruction algorithms are slow to converge and rely heavily on hand-crafted parameters to achieve good performance. Many iterations are usually required to reconstruct a high-quality image, which is computationally expensive due to repeated evaluations of the physical model. While learned iterative reconstruction approaches such as model-based learning (MBLr) can reduce the number of iterations through convolutional neural networks, it still requires repeated evaluations of the physical models at each iteration. Therefore, the goal of this study is to develop a Fast Iterative Reconstruction (FIRe) algorithm that incorporates a learned physical model into the learned iterative reconstruction scheme to further reduce the reconstruction time while maintaining robust reconstruction performance. We also propose an efficient training scheme for FIRe, which releases the enormous memory footprint required by learned iterative reconstruction methods through the concept of recursive training. The results of our proposed method demonstrate comparable reconstruction performance to learned iterative reconstruction methods with a 9x reduction in computation time and a 620x reduction in computation time compared to variational reconstruction.
Collapse
|
8
|
Genzel M, Macdonald J, Marz M. Solving Inverse Problems With Deep Neural Networks - Robustness Included? IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:1119-1134. [PMID: 35119999 DOI: 10.1109/tpami.2022.3148324] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the past five years, deep learning methods have become state-of-the-art in solving various inverse problems. Before such approaches can find application in safety-critical fields, a verification of their reliability appears mandatory. Recent works have pointed out instabilities of deep neural networks for several image reconstruction tasks. In analogy to adversarial attacks in classification, it was shown that slight distortions in the input domain may cause severe artifacts. The present article sheds new light on this concern, by conducting an extensive study of the robustness of deep-learning-based algorithms for solving underdetermined inverse problems. This covers compressed sensing with Gaussian measurements as well as image recovery from Fourier and Radon measurements, including a real-world scenario for magnetic resonance imaging (using the NYU-fastMRI dataset). Our main focus is on computing adversarial perturbations of the measurements that maximize the reconstruction error. A distinctive feature of our approach is the quantitative and qualitative comparison with total-variation minimization, which serves as a provably robust reference method. In contrast to previous findings, our results reveal that standard end-to-end network architectures are not only resilient against statistical noise, but also against adversarial perturbations. All considered networks are trained by common deep learning techniques, without sophisticated defense strategies.
Collapse
|
9
|
A Review of Deep Learning Methods for Compressed Sensing Image Reconstruction and Its Medical Applications. ELECTRONICS 2022. [DOI: 10.3390/electronics11040586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compressed sensing (CS) and its medical applications are active areas of research. In this paper, we review recent works using deep learning method to solve CS problem for images or medical imaging reconstruction including computed tomography (CT), magnetic resonance imaging (MRI) and positron-emission tomography (PET). We propose a novel framework to unify traditional iterative algorithms and deep learning approaches. In short, we define two projection operators toward image prior and data consistency, respectively, and any reconstruction algorithm can be decomposed to the two parts. Though deep learning methods can be divided into several categories, they all satisfies the framework. We built the relationship between different reconstruction methods of deep learning, and connect them to traditional methods through the proposed framework. It also indicates that the key to solve CS problem and its medical applications is how to depict the image prior. Based on the framework, we analyze the current deep learning methods and point out some important directions of research in the future.
Collapse
|
10
|
Herzberg W, Rowe DB, Hauptmann A, Hamilton SJ. Graph Convolutional Networks for Model-Based Learning in Nonlinear Inverse Problems. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2021; 7:1341-1353. [PMID: 35873096 PMCID: PMC9307146 DOI: 10.1109/tci.2021.3132190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The majority of model-based learned image reconstruction methods in medical imaging have been limited to uniform domains, such as pixelated images. If the underlying model is solved on nonuniform meshes, arising from a finite element method typical for nonlinear inverse problems, interpolation and embeddings are needed. To overcome this, we present a flexible framework to extend model-based learning directly to nonuniform meshes, by interpreting the mesh as a graph and formulating our network architectures using graph convolutional neural networks. This gives rise to the proposed iterative Graph Convolutional Newton-type Method (GCNM), which includes the forward model in the solution of the inverse problem, while all updates are directly computed by the network on the problem specific mesh. We present results for Electrical Impedance Tomography, a severely ill-posed nonlinear inverse problem that is frequently solved via optimization-based methods, where the forward problem is solved by finite element methods. Results for absolute EIT imaging are compared to standard iterative methods as well as a graph residual network. We show that the GCNM has good generalizability to different domain shapes and meshes, out of distribution data as well as experimental data, from purely simulated training data and without transfer training.
Collapse
Affiliation(s)
- William Herzberg
- Department of Mathematical and Statistical Sciences; Marquette University, Milwaukee, WI 53233 USA
| | - Daniel B Rowe
- Department of Mathematical and Statistical Sciences; Marquette University, Milwaukee, WI 53233 USA
| | - Andreas Hauptmann
- Research Unit of Mathematical Sciences; University of Oulu, Oulu, Finland and with the Department of Computer Science; University College London, London, United Kingdom
| | - Sarah J Hamilton
- Department of Mathematical and Statistical Sciences; Marquette University, Milwaukee, WI 53233 USA
| |
Collapse
|
11
|
Tao X, Wang Y, Lin L, Hong Z, Ma J. Learning to Reconstruct CT Images From the VVBP-Tensor. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3030-3041. [PMID: 34138703 DOI: 10.1109/tmi.2021.3090257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep learning (DL) is bringing a big movement in the field of computed tomography (CT) imaging. In general, DL for CT imaging can be applied by processing the projection or the image data with trained deep neural networks (DNNs), unrolling the iterative reconstruction as a DNN for training, or training a well-designed DNN to directly reconstruct the image from the projection. In all of these applications, the whole or part of the DNNs work in the projection or image domain alone or in combination. In this study, instead of focusing on the projection or image, we train DNNs to reconstruct CT images from the view-by-view backprojection tensor (VVBP-Tensor). The VVBP-Tensor is the 3D data before summation in backprojection. It contains structures of the scanned object after applying a sorting operation. Unlike the image or projection that provides compressed information due to the integration/summation step in forward or back projection, the VVBP-Tensor provides lossless information for processing, allowing the trained DNNs to preserve fine details of the image. We develop a learning strategy by inputting slices of the VVBP-Tensor as feature maps and outputting the image. Such strategy can be viewed as a generalization of the summation step in conventional filtered backprojection reconstruction. Numerous experiments reveal that the proposed VVBP-Tensor domain learning framework obtains significant improvement over the image, projection, and hybrid projection-image domain learning frameworks. We hope the VVBP-Tensor domain learning framework could inspire algorithm development for DL-based CT imaging.
Collapse
|
12
|
Hsu KT, Guan S, Chitnis PV. Comparing Deep Learning Frameworks for Photoacoustic Tomography Image Reconstruction. PHOTOACOUSTICS 2021; 23:100271. [PMID: 34094851 PMCID: PMC8165448 DOI: 10.1016/j.pacs.2021.100271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 05/02/2023]
Abstract
Conventional reconstruction methods for photoacoustic images are not suitable for the scenario of sparse sensing and geometrical limitation. To overcome these challenges and enhance the quality of reconstruction, several learning-based methods have recently been introduced for photoacoustic tomography reconstruction. The goal of this study is to compare and systematically evaluate the recently proposed learning-based methods and modified networks for photoacoustic image reconstruction. Specifically, learning-based post-processing methods and model-based learned iterative reconstruction methods are investigated. In addition to comparing the differences inherently brought by the models, we also study the impact of different inputs on the reconstruction effect. Our results demonstrate that the reconstruction performance mainly stems from the effective amount of information carried by the input. The inherent difference of the models based on the learning-based post-processing method does not provide a significant difference in photoacoustic image reconstruction. Furthermore, the results indicate that the model-based learned iterative reconstruction method outperforms all other learning-based post-processing methods in terms of generalizability and robustness.
Collapse
|
13
|
Lunz S, Hauptmann A, Tarvainen T, Schönlieb CB, Arridge S. On Learned Operator Correction in Inverse Problems. SIAM JOURNAL ON IMAGING SCIENCES 2021; 14:92-127. [PMID: 39741577 PMCID: PMC7617273 DOI: 10.1137/20m1338460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We discuss the possibility of learning a data-driven explicit model correction for inverse problems and whether such a model correction can be used within a variational framework to obtain regularized reconstructions. This paper discusses the conceptual difficulty of learning such a forward model correction and proceeds to present a possible solution as a forward-adjoint correction that explicitly corrects in both data and solution spaces. We then derive conditions under which solutions to the variational problem with a learned correction converge to solutions obtained with the correct operator. The proposed approach is evaluated on an application to limited view photoacoustic tomography and compared to the established framework of the Bayesian approximation error method.
Collapse
Affiliation(s)
- Sebastian Lunz
- University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Cambridge
| | - Andreas Hauptmann
- University of Oulu, Research Unit of Mathematical Sciences; University College London, Department of Computer Science, London
| | - Tanja Tarvainen
- University of Eastern Finland, Department of Applied Physics, Kuopio; University College London, Department of Computer Science, London
| | | | - Simon Arridge
- University College London, Department of Computer Science, London
| |
Collapse
|