• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695755)   Today's Articles (53)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Early oral feeding after esophagectomy accelerated gut function recovery by regulating brain-gut peptide secretion. Surgery 2022;172:919-925. [DOI: 10.1016/j.surg.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/18/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
2
Wang Y, Deng Y, Shen Y, Jin H. A New Concept of Multiple Neural Networks Structure Using Convex Combination. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:4968-4979. [PMID: 32086222 DOI: 10.1109/tnnls.2019.2962020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
3
Rajan R, Gandhi V, Soundharajan P, Joo YH. Almost periodic dynamics of memristive inertial neural networks with mixed delays. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
4
Peng X, He Y, Long F, Wu M. Global exponential stability analysis of neural networks with a time-varying delay via some state-dependent zero equations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
5
Delay-dependent global exponential stability for neural networks with time-varying delay. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Novel results on dissipativity analysis for generalized delayed neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
7
Fractional delay segments method on time-delayed recurrent neural networks with impulsive and stochastic effects: An exponential stability approach. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Zhang XM, Han QL, Ge X, Ding D. An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.038] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
9
Holistic adjustable delay interval method-based stability and generalized dissipativity analysis for delayed recurrent neural networks. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.08.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
10
Ma Y, Ma N, Chen L, Zheng Y, Han Y. Exponential stability for the neutral-type singular neural network with time-varying delays. INT J MACH LEARN CYB 2017. [DOI: 10.1007/s13042-017-0764-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
11
Sheng Y, Shen Y, Zhu M. Delay-Dependent Global Exponential Stability for Delayed Recurrent Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:2974-2984. [PMID: 27705864 DOI: 10.1109/tnnls.2016.2608879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
12
Ding L, He Y, Liao Y, Wu M. New result for generalized neural networks with additive time-varying delays using free-matrix-based integral inequality method. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
13
Manivannan R, Samidurai R, Cao J, Alsaedi A, Alsaadi FE. Global exponential stability and dissipativity of generalized neural networks with time-varying delay signals. Neural Netw 2017;87:149-159. [DOI: 10.1016/j.neunet.2016.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/05/2016] [Accepted: 12/13/2016] [Indexed: 11/26/2022]
14
Zhang H, Shan Q, Wang Z. Stability Analysis of Neural Networks With Two Delay Components Based on Dynamic Delay Interval Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:259-267. [PMID: 26685269 DOI: 10.1109/tnnls.2015.2503749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
15
Shan Q, Zhang H, Wang Z, Wang J. Adjustable delay interval method based stochastic robust stability analysis of delayed neural networks. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
16
Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument. Neural Comput Appl 2016. [DOI: 10.1007/s00521-015-2019-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
17
Shen W, Zeng Z, Wang L. Stability analysis for uncertain switched neural networks with time-varying delay. Neural Netw 2016;83:32-41. [PMID: 27544331 DOI: 10.1016/j.neunet.2016.07.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
18
Global exponential stability of neural networks with time-varying delay based on free-matrix-based integral inequality. Neural Netw 2016;77:80-86. [DOI: 10.1016/j.neunet.2016.02.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2015] [Accepted: 02/08/2016] [Indexed: 11/21/2022]
19
Novel delay-dependent exponential stability criteria for neutral-type neural networks with non-differentiable time-varying discrete and neutral delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.08.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
20
Finite time stabilization of delayed neural networks. Neural Netw 2015;70:74-80. [DOI: 10.1016/j.neunet.2015.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/08/2015] [Accepted: 07/16/2015] [Indexed: 11/21/2022]
21
Kumar RS, Sugumaran G, Raja R, Zhu Q, Raja UK. New stability criterion of neural networks with leakage delays and impulses: a piecewise delay method. Cogn Neurodyn 2015;10:85-98. [PMID: 26834863 DOI: 10.1007/s11571-015-9356-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/06/2015] [Accepted: 09/15/2015] [Indexed: 11/24/2022]  Open
22
Wang JA, Ma XH, Wen XY. Less conservative stability criteria for neural networks with interval time-varying delay based on delay-partitioning approach. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
23
Xia J, Park JH, Zeng H, Shen H. Delay-difference-dependent robust exponential stability for uncertain stochastic neural networks with multiple delays. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
24
Xie X, Ren Z. Improved delay-dependent stability analysis for neural networks with time-varying delays. ISA TRANSACTIONS 2014;53:1000-1005. [PMID: 24933354 DOI: 10.1016/j.isatra.2014.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/02/2013] [Accepted: 05/10/2014] [Indexed: 06/03/2023]
25
Mean square input-to-state stability of a general class of stochastic recurrent neural networks with Markovian switching. Neural Comput Appl 2014. [DOI: 10.1007/s00521-014-1649-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
26
Improved delay-dependent stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.09.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
27
Liu Y, Ma W, Mahmoud MS. New results for global exponential stability of neural networks with varying delays. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
28
Zhu S, Shen Y. Robustness analysis of global exponential stability of neural networks with Markovian switching in the presence of time-varying delays or noises. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1105-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
29
Two algebraic criteria for input-to-state stability of recurrent neural networks with time-varying delays. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-0882-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
30
Zhiguang Feng, Lam J. Stability and Dissipativity Analysis of Distributed Delay Cellular Neural Networks. ACTA ACUST UNITED AC 2011;22:976-81. [DOI: 10.1109/tnn.2011.2128341] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
31
Hong-Bing Zeng, Yong He, Min Wu, Chang-Fan Zhang. Complete Delay-Decomposing Approach to Asymptotic Stability for Neural Networks With Time-Varying Delays. ACTA ACUST UNITED AC 2011;22:806-12. [DOI: 10.1109/tnn.2011.2111383] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
32
Zhang CK, He Y, Wu M. Exponential synchronization of neural networks with time-varying mixed delays and sampled-data. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2010.03.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
33
Zhu S, Shen Y, Liu L. Exponential Stability of Uncertain Stochastic Neural Networks with Markovian Switching. Neural Process Lett 2010. [DOI: 10.1007/s11063-010-9158-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
34
Zhenwei Liu, Huaguang Zhang, Qingling Zhang. Novel Stability Analysis for Recurrent Neural Networks With Multiple Delays via Line Integral-Type L-K Functional. ACTA ACUST UNITED AC 2010;21:1710-8. [DOI: 10.1109/tnn.2010.2054107] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
35
Cheng-De Zheng, Huaguang Zhang, Zhanshan Wang. An Augmented LKF Approach Involving Derivative Information of Both State and Delay. ACTA ACUST UNITED AC 2010;21:1100-9. [DOI: 10.1109/tnn.2010.2048434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
36
Wu-Hua Chen, Wei Xing Zheng. Robust Stability Analysis for Stochastic Neural Networks With Time-Varying Delay. ACTA ACUST UNITED AC 2010;21:508-14. [DOI: 10.1109/tnn.2009.2040000] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
37
Huaguang Zhang, Zhenwei Liu, Guang-Bin Huang, Zhanshan Wang. Novel Weighting-Delay-Based Stability Criteria for Recurrent Neural Networks With Time-Varying Delay. ACTA ACUST UNITED AC 2010;21:91-106. [DOI: 10.1109/tnn.2009.2034742] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
38
Zuo Z, Yang C, Wang Y. A new method for stability analysis of recurrent neural networks with interval time-varying delay. IEEE TRANSACTIONS ON NEURAL NETWORKS 2009;21:339-44. [PMID: 20028620 DOI: 10.1109/tnn.2009.2037893] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
39
Mahmoud MS. Novel robust exponential stability criteria for neural networks. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2009.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
40
New exponentially convergent state estimation method for delayed neural networks. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2009.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
41
New passivity criteria for neural networks with time-varying delay. Neural Netw 2009;22:864-8. [DOI: 10.1016/j.neunet.2009.05.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/24/2009] [Accepted: 05/24/2009] [Indexed: 11/21/2022]
42
Song Q, Liang J, Wang Z. Passivity analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2008.05.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
43
Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2008.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
44
Li C, Feng G. Delay-interval-dependent stability of recurrent neural networks with time-varying delay. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2008.02.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
45
Hu L, Gao H, Zheng WX. Novel stability of cellular neural networks with interval time-varying delay. Neural Netw 2008;21:1458-63. [DOI: 10.1016/j.neunet.2008.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/02/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
46
Exponential synchronization of chaotic neural networks with mixed delays. Neurocomputing 2008. [DOI: 10.1016/j.neucom.2007.12.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
47
Min Wu, Fang Liu, Peng Shi, Yong He, Yokoyama R. Exponential Stability Analysis for Neural Networks With Time-Varying Delay. ACTA ACUST UNITED AC 2008;38:1152-6. [DOI: 10.1109/tsmcb.2008.915652] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
48
Shaoshuai Mou, Huijun Gao, Wenyi Qiang, Chen K. New Delay-Dependent Exponential Stability for Neural Networks With Time Delay. ACTA ACUST UNITED AC 2008;38:571-6. [DOI: 10.1109/tsmcb.2007.913124] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
49
Huaguang Zhang, Yingchun Wang. Stability Analysis of Markovian Jumping Stochastic Cohen–Grossberg Neural Networks With Mixed Time Delays. ACTA ACUST UNITED AC 2008;19:366-70. [DOI: 10.1109/tnn.2007.910738] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
50
Li T, Fei SM. Stability analysis of Cohen–Grossberg neural networks with time-varying and distributed delays. Neurocomputing 2008. [DOI: 10.1016/j.neucom.2007.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA