• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698275)   Today's Articles (44)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Peng H, Zeng B, Yang L, Xu Y, Lu R. Distributed Extended State Estimation for Complex Networks With Nonlinear Uncertainty. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:5952-5960. [PMID: 34914598 DOI: 10.1109/tnnls.2021.3131661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
2
Li XJ, Yang GH. FLS-Based Adaptive Synchronization Control of Complex Dynamical Networks With Nonlinear Couplings and State-Dependent Uncertainties. IEEE TRANSACTIONS ON CYBERNETICS 2016;46:171-180. [PMID: 25720020 DOI: 10.1109/tcyb.2015.2399334] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
3
Pinning synchronization of coupled inertial delayed neural networks. Cogn Neurodyn 2014;9:341-50. [PMID: 25972982 DOI: 10.1007/s11571-014-9322-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/28/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]  Open
4
Wei-Song Zhong, Guo-Ping Liu, Thomas C. Global Bounded Consensus of Multiagent Systems With Nonidentical Nodes and Time Delays. ACTA ACUST UNITED AC 2012;42:1480-8. [DOI: 10.1109/tsmcb.2012.2192428] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
5
Zhao M, Zhang H, Wang Z. Synchronization in complex dynamical networks based on the feedback of scalar signals. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-0964-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
6
Yue D, Li H. Synchronization stability of continuous/discrete complex dynamical networks with interval time-varying delays. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2009.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
7
Lu J, Ho DWC. Globally exponential synchronization and synchronizability for general dynamical networks. ACTA ACUST UNITED AC 2009;40:350-61. [PMID: 19858028 DOI: 10.1109/tsmcb.2009.2023509] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
8
Juang J, Liang YH. Coordinate transformation and matrix measure approach for synchronization of complex networks. CHAOS (WOODBURY, N.Y.) 2009;19:033131. [PMID: 19792011 DOI: 10.1063/1.3212941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
9
Shang Y, Chen M, Kurths J. Generalized synchronization of complex networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009;80:027201. [PMID: 19792284 DOI: 10.1103/physreve.80.027201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Indexed: 05/28/2023]
10
Li P, Chen M, Wu Y, Kurths J. Matrix-measure criterion for synchronization in coupled-map networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009;79:067102. [PMID: 19658627 DOI: 10.1103/physreve.79.067102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Indexed: 05/28/2023]
11
He W, Cao J. Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure. CHAOS (WOODBURY, N.Y.) 2009;19:013118. [PMID: 19334982 DOI: 10.1063/1.3076397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
12
Juang J, Li CL, Liang YH. Global synchronization in lattices of coupled chaotic systems. CHAOS (WOODBURY, N.Y.) 2007;17:033111. [PMID: 17902993 DOI: 10.1063/1.2754668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
13
Chen M. Synchronization in time-varying networks: a matrix measure approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;76:016104. [PMID: 17677530 DOI: 10.1103/physreve.76.016104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Indexed: 05/16/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA