1
|
Shen Y, Kleinberg S. Personalized Blood Glucose Forecasting From Limited CGM Data Using Incrementally Retrained LSTM. IEEE Trans Biomed Eng 2025; 72:1266-1277. [PMID: 39514345 PMCID: PMC11999170 DOI: 10.1109/tbme.2024.3494732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
For people with Type 1 diabetes (T1D), accurate blood glucose (BG) forecasting is crucial for the effective delivery of insulin by Artificial Pancreas (AP) systems. Deep learning frameworks like Long Short-Term-Memory (LSTM) have been widely used to predict BG using continuous glucose monitor (CGM) data. However, these methods usually require large amounts of training data for personalized forecasts. Moreover, individuals with diabetes exhibit diverse glucose variability (GV), resulting in varying forecast accuracy. To address these limitations, we propose a novel deep learning framework: Incrementally Retrained Stacked LSTM (IS-LSTM). This approach gradually adapts to individualsâ data and employs parameter-transfer for efficiency. We compare our method to three benchmarks using two CGM datasets from individuals with T1D: OpenAPS and Replace-BG. On both datasets, our approach significantly reduces root mean square error compared to the state of the art (Stacked LSTM): from 14.55 to 10.23 mg/dL (OpenAPS) and 17.15 to 13.41 mg/dL (Replace-BG) at 30-minute Prediction Horizon (PH). Clarke error grid analysis demonstrates clinical feasibility with at least 98.81% and 97.25% of predictions within the clinically safe zone at 30- and 60-minute PHs. Further, we demonstrate the effectiveness of our method in cold-start scenarios, which helps new CGM users obtain accurate predictions.
Collapse
|
2
|
Ming W, Guo X, Zhang G, Liu Y, Wang Y, Zhang H, Liang H, Yang Y. Recent advances in the precision control strategy of artificial pancreas. Med Biol Eng Comput 2024; 62:1615-1638. [PMID: 38418768 DOI: 10.1007/s11517-024-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The scientific diagnosis and treatment of patients with diabetes require frequent blood glucose testing and insulin delivery to normoglycemia. Therefore, an artificial pancreas with a continuous blood glucose (BG) monitoring function is an urgent research target in the medical industry. The problem of closed-loop algorithmic control of the BG with a time delay is a key and difficult issue that needs to be overcome in the development of an artificial pancreas. Firstly, the composition, structure, and control characteristics of the artificial pancreas are introduced. Subsequently, the research progress of artificial pancreas control algorithms is reviewed, and the characteristics, advantages, and disadvantages of proportional-integral-differential control, model predictive control, and artificial intelligence control are compared and analyzed to determine whether they are suitable for the practical application of the artificial pancreas. Additionally, key advancements in areas such as blood glucose data monitoring, adaptive models, wearable devices, and fully automated artificial pancreas systems are also reviewed. Finally, this review highlights that meal prediction, control safety, integration, streamlining the optimization of control algorithms, constant temperature preservation of insulin, and dual-hormone artificial pancreas are issues that require further attention in the future.
Collapse
Affiliation(s)
- Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, 450002, Zhengzhou, China
| | - Xudong Guo
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, 450002, Zhengzhou, China
| | - Guojun Zhang
- Guangdong HUST Industrial Technology Research Institute, 523808, Dongguan, China
| | - Yinxia Liu
- Prenatal Diagnosis Center of Dongguan Kanghua Hospital, 523808, Dongguan, China
| | - Yongxin Wang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Hongmei Zhang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Haofang Liang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Yuan Yang
- Laboratory of Regenerative Medicine in Sports Science, School of Sports Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
3
|
Parra D, Joedicke D, Velasco JM, Kronberger G, Hidalgo JI. Learning Difference Equations With Structured Grammatical Evolution for Postprandial Glycaemia Prediction. IEEE J Biomed Health Inform 2024; 28:3067-3078. [PMID: 38416612 DOI: 10.1109/jbhi.2024.3371108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
People with diabetes must carefully monitor their blood glucose levels, especially after eating. Blood glucose management requires a proper combination of food intake and insulin boluses. Glucose prediction is vital to avoid dangerous post-meal complications in treating individuals with diabetes. Although traditional methods, and also artificial neural networks, have shown high accuracy rates, sometimes they are not suitable for developing personalised treatments by physicians due to their lack of interpretability. This study proposes a novel glucose prediction method emphasising interpretability: Interpretable Sparse Identification by Grammatical Evolution. Combined with a previous clustering stage, our approach provides finite difference equations to predict postprandial glucose levels up to two hours after meals. We divide the dataset into four-hour segments and perform clustering based on blood glucose values for the two-hour window before the meal. Prediction models are trained for each cluster for the two-hour windows after meals, allowing predictions in 15-minute steps, yielding up to eight predictions at different time horizons. Prediction safety was evaluated based on Parkes Error Grid regions. Our technique produces safe predictions through explainable expressions, avoiding zones D (0.2% average) and E (0%) and reducing predictions on zone C (6.2%). In addition, our proposal has slightly better accuracy than other techniques, including sparse identification of non-linear dynamics and artificial neural networks. The results demonstrate that our proposal provides interpretable solutions without sacrificing prediction accuracy, offering a promising approach to glucose prediction in diabetes management that balances accuracy, interpretability, and computational efficiency.
Collapse
|
4
|
Cappon G, Prendin F, Facchinetti A, Sparacino G, Favero SD. Individualized Models for Glucose Prediction in Type 1 Diabetes: Comparing Black-Box Approaches to a Physiological White-Box One. IEEE Trans Biomed Eng 2023; 70:3105-3115. [PMID: 37195837 DOI: 10.1109/tbme.2023.3276193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Accurate blood glucose (BG) prediction are key in next-generation tools for type 1 diabetes (T1D) management, such as improved decision support systems and advanced closed-loop control. Glucose prediction algorithms commonly rely on black-box models. Large physiological models, successfully adopted for simulation, were little explored for glucose prediction, mostly because their parameters are hard to individualize. In this work, we develop a BG prediction algorithm based on a personalized physiological model inspired by the UVA/Padova T1D Simulator. Then we compare white-box and advanced black-box personalized prediction techniques. METHODS A personalized nonlinear physiological model is identified from patient data through a Bayesian approach based on Markov Chain Monte Carlo technique. The individualized model was integrated within a particle filter (PF) to predict future BG concentrations. The black-box methodologies considered are non-parametric models estimated via gaussian regression (NP), three deep learning methods: long-short-term-memory (LSTM), gated recurrent unit (GRU), temporal convolutional networks (TCN), and a recursive autoregressive with exogenous input model (rARX). BG forecasting performances are assessed for several prediction horizons (PH) on 12 individuals with T1D, monitored in free-living conditions under open-loop therapy for 10 weeks. RESULTS NP models provide the most effective BG predictions by achieving a root mean square error (RMSE), RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL and RMSE = 31.60 mg/dL, significantly outperforming: LSTM, GRU (for PH = 30 minutes), TCN, rARX, and the proposed physiological model for PH=30, 45 and 60 minutes. CONCLUSIONS Black-box strategies remain preferable for glucose prediction even when compared to a white-box model with sound physiological structure and individualized parameters.
Collapse
|
5
|
Deep transfer learning: a novel glucose prediction framework for new subjects with type 2 diabetes. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-021-00360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractBlood glucose (BG) prediction is an effective approach to avoid hyper- and hypoglycemia, and achieve intelligent glucose management for patients with type 1 or serious type 2 diabetes. Recent studies have tended to adopt deep learning networks to obtain improved prediction models and more accurate prediction results, which have often required significant quantities of historical continuous glucose-monitoring (CGM) data. However, for new patients with limited historical dataset, it becomes difficult to establish an acceptable deep learning network for glucose prediction. Consequently, the goal of this study was to design a novel prediction framework with instance-based and network-based deep transfer learning for cross-subject glucose prediction based on segmented CGM time series. Taking the effects of biodiversity into consideration, dynamic time warping (DTW) was applied to determine the proper source domain dataset that shared the greatest degree of similarity for new subjects. After that, a network-based deep transfer learning method was designed with cross-domain dataset to obtain a personalized model combined with improved generalization capability. In a case study, the clinical dataset demonstrated that, with additional segmented dataset from other subjects, the proposed deep transfer learning framework achieved more accurate glucose predictions for new subjects with type 2 diabetes.
Collapse
|
6
|
Koutny T, Mayo M. Predicting glucose level with an adapted branch predictor. Comput Biol Med 2022; 145:105388. [DOI: 10.1016/j.compbiomed.2022.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022]
|
7
|
Optimization and Evaluation of an Intelligent Short-Term Blood Glucose Prediction Model Based on Noninvasive Monitoring and Deep Learning Techniques. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8956850. [PMID: 35449869 PMCID: PMC9017442 DOI: 10.1155/2022/8956850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Continuous noninvasive blood glucose monitoring and estimation management by using photoplethysmography (PPG) technology always have a series of problems, such as substantial time variability, inaccuracy, and complex nonlinearity. This paper proposes a blood glucose (BG) prediction model for more precise prediction based on BG series decomposition by complete aggregation empirical mode decomposition based on adaptive white noise (CEEMDAN) and the gated recurrent unit (GRU) that is optimized by improved bacterial foraging optimization (IBFO). Hierarchical clustering technology recombines the decomposed BG series according to their sample entropy and the correlations with the original BG trends. Dynamic BG trends are regressed separately for each recombined BG series by the GRU model to realize the more precise estimations, which are optimized by IBFO for its structure and superparameters. Through experiments, the optimized and basic LSTM, RNN, and support vector regression (SVR) are compared to evaluate the performance of the proposed model. The experimental results indicate that the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the 15-min IBFO-GRU prediction is improved on average by about 13.1% and 18.4%, respectively, compared with those of the RNN and LSTM optimized by IBFO. Meanwhile, the proposed model improved the Clarke error grid results by about 2.6% and 5.0% compared with those of the IBFO-LSTM and IBFO-RNN in 30-min prediction and by 4.1% and 6.6% in 15-min ahead forecast, respectively. The evaluation outcomes of our proposed CEEMDAN-IBFO-GRU model have high accuracy and adaptability and can effectively provide early intervention control of the occurrence of hyperglycemic complications.
Collapse
|
8
|
Sun X, Rashid M, Hobbs N, Askari MR, Brandt R, Shahidehpour A, Cinar A. Prior Informed Regularization of Recursively Updated Latent-Variables-Based Models with Missing Observations. CONTROL ENGINEERING PRACTICE 2021; 116:104933. [PMID: 34539101 PMCID: PMC8443145 DOI: 10.1016/j.conengprac.2021.104933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many data-driven modeling techniques identify locally valid, linear representations of time-varying or nonlinear systems, and thus the model parameters must be adaptively updated as the operating conditions of the system vary, though the model identification typically does not consider prior knowledge. In this work, we propose a new regularized partial least squares (rPLS) algorithm that incorporates prior knowledge in the model identification and can handle missing data in the independent covariates. This latent variable (LV) based modeling technique consists of three steps. First, a LV-based model is developed on the historical time series data. In the second step, the missing observations in the new incomplete data sample are estimated. Finally, the future values of the outputs are predicted as a linear combination of estimated scores and loadings. The model is recursively updated as new data are obtained from the system. The performance of the proposed rPLS and rPLS with exogenous inputs (rPLSX) algorithms are evaluated by modeling variations in glucose concentration (GC) of people with Type 1 diabetes (T1D) in response to meals and physical activities for prediction windows up to one hour, or 12 sampling instances, into the future. The proposed rPLS family of GC prediction models are evaluated with both in-silico and clinical experiment data and compared with the performance of recursive time series and kernel-based models. The root mean squared error (RMSE) with simulated subjects in the multivariable T1D simulator where physical activity effects are incorporated in GC variations are 2.52 and 5.81 mg/dL for 30 and 60 mins ahead predictions (respectively) when information for all meals and physical activities are used, increasing to 2.70 and 6.54 mg/dL (respectively) when meals and activities occurred, but the information is with-held from the modeling algorithms. The RMSE is 10.45 and 14.48 mg/dL for clinical study with prediction horizons of 30 and 60 mins, respectively. The low RMSE values demonstrate the effectiveness of the proposed rPLS approach compared to the conventional recursive modeling algorithms.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Mohammad Reza Askari
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Rachel Brandt
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Andrew Shahidehpour
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| |
Collapse
|
9
|
Zhang Y, Sun J, Liu L, Qiao H. A review of biosensor technology and algorithms for glucose monitoring. J Diabetes Complications 2021; 35:107929. [PMID: 33902999 DOI: 10.1016/j.jdiacomp.2021.107929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) has become a serious illness in the whole world. Until now, there is no effective cure for patients with DM. It is well known that the glucose level is one key factor to determine the progress of DM. It is also an important reference to carry out the accurate and timely treatment for patients with DM. In this article, the related biosensors technology that can be utilized to identify and predict glucose level are reviewed in detail, including the algorithms that can help to achieve numerical value of glucose level. Firstly, the biosensor technology based on the physiological fluids are illustrated, including blood, sweat, interstitial fluid, ocular fluid, and other available fluids. Secondly, the algorithms for achieving numerical value of glucose level are investigated, including the physiological model-based method and the machine learning-based method. Finally, the future development trend and challenges of glucose level monitoring are given and the conclusions are drawn.
Collapse
Affiliation(s)
- Yaguang Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingxue Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Liansheng Liu
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Hong Qiao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
10
|
Daniels J, Herrero P, Georgiou P. A Multitask Learning Approach to Personalised Blood Glucose Prediction. IEEE J Biomed Health Inform 2021; 26:436-445. [PMID: 34314367 DOI: 10.1109/jbhi.2021.3100558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Blood glucose prediction algorithms are key tools in the development of decision support systems and closed-loop insulin delivery systems for blood glucose control in diabetes. Deep learning models have provided leading results among machine learning algorithms to date in glucose prediction. However these models typically require large amounts of data to obtain best personalised glucose prediction results. Multitask learning facilitates an approach for leveraging data from multiple subjects while still learning accurate personalised models. In this work we present results comparing the effectiveness of multitask learning over sequential transfer learning, and learning only on subject-specific data with neural networks and support vector regression. The multitask learning approach shows consistent leading performance in predictive metrics at both short-term and long-term prediction horizons. We obtain a predictive accuracy (RMSE) of 18.8 2.3, 25.3 2.9, 31.8 3.9, 41.2 4.5, 47.2 4.6 mg/dL at 30, 45, 60, 90, and 120 min prediction horizons respectively, with at least 93\% clinically acceptable predictions using the Clarke Error Grid (EGA) at each prediction horizon. We also identify relevant prior information such as glycaemic variability that can be incorporated to improve predictive performance at long-term prediction horizons. Furthermore, we demonstrate consistent performance - 5% change in both RMSE and EGA (Zone A) - in rare cases of adverse glycaemic events with 1-6 weeks of training data. In conclusion, a multitask approach can allow for deploying personalised models even with significantly less subject-specific data without compromising performance.
Collapse
|
11
|
Lee S, Kim J, Park SW, Jin SM, Park SM. Toward a Fully Automated Artificial Pancreas System Using a Bioinspired Reinforcement Learning Design: In Silico Validation. IEEE J Biomed Health Inform 2021; 25:536-546. [PMID: 32750935 DOI: 10.1109/jbhi.2020.3002022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The automation of insulin treatment is the most challenge aspect of glucose management for type 1 diabetes owing to unexpected exogenous events (e.g., meal intake). In this article, we propose a novel reinforcement learning (RL) based artificial intelligence (AI) algorithm for a fully automated artificial pancreas (AP) system. METHODS A bioinspired RL designing method was developed for automated insulin infusion. This method has reward functions that imply the temporal homeostatic objective and discount factors that reflect an individual specific pharmacological characteristic. The proposed method was applied to a training method using an RL algorithm and was evaluated in virtual patients from the FDA approved UVA/Padova simulator with unannounced meal intakes. RESULTS For a single-meal experiment with preprandial fasting, the trained policy demonstrated fully automated regulation in both the basal and postprandial phases. In the in silico trial with a variation of insulin sensitivity and dawn phenomenon, the policy achieved a mean glucose of 124.72 mg/dL and percentage time in the normal range of 89.56%. The layer-wise relevance propagation provides interpretable information on AI-driven decision for robustness to sensor noise, automated postprandial regulation, and insulin stacking avoidance. CONCLUSION The AP algorithm based on the bioinspired RL approach enables fully automated blood glucose control with unannounced meal intake. SIGNIFICANCE The proposed framework can be extended to other drug-based treatments for systems with significant uncertainties.
Collapse
|
12
|
Hajizadeh I, Samadi S, Sevil M, Rashid M, Cinar A. Performance Assessment and Modification of an Adaptive Model Predictive Control for Automated Insulin Delivery by a Multivariable Artificial Pancreas. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|