1
|
Zha Z, Yuan X, Wen B, Zhang J, Zhu C. Nonconvex Structural Sparsity Residual Constraint for Image Restoration. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12440-12453. [PMID: 34161250 DOI: 10.1109/tcyb.2021.3084931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article proposes a novel nonconvex structural sparsity residual constraint (NSSRC) model for image restoration, which integrates structural sparse representation (SSR) with nonconvex sparsity residual constraint (NC-SRC). Although SSR itself is powerful for image restoration by combining the local sparsity and nonlocal self-similarity in natural images, in this work, we explicitly incorporate the novel NC-SRC prior into SSR. Our proposed approach provides more effective sparse modeling for natural images by applying a more flexible sparse representation scheme, leading to high-quality restored images. Moreover, an alternating minimizing framework is developed to solve the proposed NSSRC-based image restoration problems. Extensive experimental results on image denoising and image deblocking validate that the proposed NSSRC achieves better results than many popular or state-of-the-art methods over several publicly available datasets.
Collapse
|
2
|
Zhu Q, Deng W, Zheng Z, Zhong Y, Guan Q, Lin W, Zhang L, Li D. A Spectral-Spatial-Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:11709-11723. [PMID: 34033562 DOI: 10.1109/tcyb.2021.3070577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep learning techniques have been widely applied to hyperspectral image (HSI) classification and have achieved great success. However, the deep neural network model has a large parameter space and requires a large number of labeled data. Deep learning methods for HSI classification usually follow a patchwise learning framework. Recently, a fast patch-free global learning (FPGA) architecture was proposed for HSI classification according to global spatial context information. However, FPGA has difficulty in extracting the most discriminative features when the sample data are imbalanced. In this article, a spectral-spatial-dependent global learning (SSDGL) framework based on the global convolutional long short-term memory (GCL) and global joint attention mechanism (GJAM) is proposed for insufficient and imbalanced HSI classification. In SSDGL, the hierarchically balanced (H-B) sampling strategy and the weighted softmax loss are proposed to address the imbalanced sample problem. To effectively distinguish similar spectral characteristics of land cover types, the GCL module is introduced to extract the long short-term dependency of spectral features. To learn the most discriminative feature representations, the GJAM module is proposed to extract attention areas. The experimental results obtained with three public HSI datasets show that the SSDGL has powerful performance in insufficient and imbalanced sample problems and is superior to other state-of-the-art methods.
Collapse
|
3
|
Xie T, Li S, Lai J. Adaptive Rank and Structured Sparsity Corrections for Hyperspectral Image Restoration. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:8729-8740. [PMID: 33606649 DOI: 10.1109/tcyb.2021.3051656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hyperspectral images (HSIs) are inevitably contaminated by the mixed noise (such as Gaussian noise, impulse noise, deadlines, and stripes), which could influence the subsequent processing accuracy. Generally, HSI restoration can be transformed into the low-rank matrix recovery (LRMR). In the LRMR, the nuclear norm is widely used to substitute the matrix rank, but its effectiveness is still worth improving. Besides, the l0 -norm cannot capture the sparse noise's structured sparsity property. To handle these issues, the adaptive rank and structured sparsity corrections (ARSSC) are presented for HSI restoration. The ARSSC introduces two convex regularizers, that is: 1) the rank correction (RC) and 2) the structured sparsity correction (SSC), to, respectively, approximate the matrix rank and the l2,0 -norm. The RC and the SSC can adaptively offset the penalization of large entries from the nuclear norm and the l2,1 -norm, respectively, where the larger the entry, the greater its offset. Therefore, the proposed ARSSC achieves a tighter approximation of the noise-free HSI low-rank structure and promotes the structured sparsity of sparse noise. An efficient alternative direction method of multipliers (ADMM) algorithm is applied to solve the resulting convex optimization problem. The superiority of the ARSSC in terms of the mixed noise removal and spatial-spectral structure information preserving, is demonstrated by several experimental results both on simulated and real datasets, compared with other state-of-the-art HSI restoration approaches.
Collapse
|
4
|
Huang KK, Ren CX, Liu H, Lai ZR, Yu YF, Dai DQ. Hyperspectral Image Classification via Discriminant Gabor Ensemble Filter. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:8352-8365. [PMID: 33544687 DOI: 10.1109/tcyb.2021.3051141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For a broad range of applications, hyperspectral image (HSI) classification is a hot topic in remote sensing, and convolutional neural network (CNN)-based methods are drawing increasing attention. However, to train millions of parameters in CNN requires a large number of labeled training samples, which are difficult to collect. A conventional Gabor filter can effectively extract spatial information with different scales and orientations without training, but it may be missing some important discriminative information. In this article, we propose the Gabor ensemble filter (GEF), a new convolutional filter to extract deep features for HSI with fewer trainable parameters. GEF filters each input channel by some fixed Gabor filters and learnable filters simultaneously, then reduces the dimensions by some learnable 1×1 filters to generate the output channels. The fixed Gabor filters can extract common features with different scales and orientations, while the learnable filters can learn some complementary features that Gabor filters cannot extract. Based on GEF, we design a network architecture for HSI classification, which extracts deep features and can learn from limited training samples. In order to simultaneously learn more discriminative features and an end-to-end system, we propose to introduce the local discriminant structure for cross-entropy loss by combining the triplet hard loss. Results of experiments on three HSI datasets show that the proposed method has significantly higher classification accuracy than other state-of-the-art methods. Moreover, the proposed method is speedy for both training and testing.
Collapse
|
5
|
A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification. REMOTE SENSING 2022. [DOI: 10.3390/rs14153555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Convolutional neural networks are widely applied in hyperspectral image (HSI) classification and show excellent performance. However, there are two challenges: the first is that fine features are generally lost in the process of depth transfer; the second is that most existing studies usually restore to first-order features, whereas they rarely consider second-order representations. To tackle the above two problems, this article proposes a hybrid-order spectral-spatial feature network (HS2FNet) for hyperspectral image classification. This framework consists of a precedent feature extraction module (PFEM) and a feature rethinking module (FRM). The former is constructed to capture multiscale spectral-spatial features and focus on adaptively recalibrate channel-wise and spatial-wise feature responses to achieve first-order spectral-spatial feature distillation. The latter is devised to heighten the representative ability of HSI by capturing the importance of feature cross-dimension, while learning more discriminative representations by exploiting the second-order statistics of HSI, thereby improving the classification performance. Massive experiments demonstrate that the proposed network achieves plausible results compared with the state-of-the-art classification methods.
Collapse
|
6
|
Zhang M, Gong M, He H, Zhu S. Symmetric All Convolutional Neural-Network-Based Unsupervised Feature Extraction for Hyperspectral Images Classification. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:2981-2993. [PMID: 33027014 DOI: 10.1109/tcyb.2020.3020540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, deep-learning-based feature extraction (FE) methods have shown great potential in hyperspectral image (HSI) processing. Unfortunately, it also brings a challenge that the training of the deep learning networks always requires large amounts of labeled samples, which is hardly available for HSI data. To address this issue, in this article, a novel unsupervised deep-learning-based FE method is proposed, which is trained in an end-to-end style. The proposed framework consists of an encoder subnetwork and a decoder subnetwork. The structure of the two subnetworks is symmetric for obtaining better downsampling and upsampling representation. Considering both spectral and spatial information, 3-D all convolution nets and deconvolution nets are used to structure the encoder subnetwork and decoder subnetwork, respectively. However, 3-D convolution and deconvolution kernels bring more parameters, which can deteriorate the quality of the obtained features. To alleviate this problem, a novel cost function with a sparse regular term is designed to obtain more robust feature representation. Experimental results on publicly available datasets indicate that the proposed method can obtain robust and effective features for subsequent classification tasks.
Collapse
|
7
|
Datta D, Mallick PK, Bhoi AK, Ijaz MF, Shafi J, Choi J. Hyperspectral Image Classification: Potentials, Challenges, and Future Directions. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3854635. [PMID: 35528334 PMCID: PMC9071975 DOI: 10.1155/2022/3854635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Recent imaging science and technology discoveries have considered hyperspectral imagery and remote sensing. The current intelligent technologies, such as support vector machines, sparse representations, active learning, extreme learning machines, transfer learning, and deep learning, are typically based on the learning of the machines. These techniques enrich the processing of such three-dimensional, multiple bands, and high-resolution images with their precision and fidelity. This article presents an extensive survey depicting machine-dependent technologies' contributions and deep learning on landcover classification based on hyperspectral images. The objective of this study is three-fold. First, after reading a large pool of Web of Science (WoS), Scopus, SCI, and SCIE-indexed and SCIE-related articles, we provide a novel approach for review work that is entirely systematic and aids in the inspiration of finding research gaps and developing embedded questions. Second, we emphasize contemporary advances in machine learning (ML) methods for identifying hyperspectral images, with a brief, organized overview and a thorough assessment of the literature involved. Finally, we draw the conclusions to assist researchers in expanding their understanding of the relationship between machine learning and hyperspectral images for future research.
Collapse
Affiliation(s)
- Debaleena Datta
- School of Computer Engineering, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar 751024, India
| | - Pradeep Kumar Mallick
- School of Computer Engineering, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar 751024, India
| | - Akash Kumar Bhoi
- KIET Group of Institutions, Delhi-NCR, Ghaziabad-201206, India
- Directorate of Research, Sikkim Manipal University, Gangtok 737102, Sikkim, India
- AB-Tech eResearch (ABTeR), Sambalpur, Burla 768018, India
| | - Muhammad Fazal Ijaz
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jana Shafi
- Department of Computer Science, College of Arts and Science, Prince Sattam Bin Abdul Aziz University, Wadi Ad-Dawasir 11991, Saudi Arabia
| | - Jaeyoung Choi
- School of Computing, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Chen X, Zhou G, Wang Y, Hou M, Zhao Q, Xie S. Accommodating Multiple Tasks' Disparities With Distributed Knowledge-Sharing Mechanism. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:2440-2452. [PMID: 32649285 DOI: 10.1109/tcyb.2020.3002911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deep multitask learning (MTL) shares beneficial knowledge across participating tasks, alleviating the impacts of extreme learning conditions on their performances such as the data scarcity problem. In practice, participators stemming from different domain sources often have varied complexities and input sizes, for example, in the joint learning of computer vision tasks with RGB and grayscale images. For adapting to these differences, it is appropriate to design networks with proper representational capacities and construct neural layers with corresponding widths. Nevertheless, most of the state-of-the-art methods pay little attention to such situations, and actually fail to handle the disparities. To work with the dissimilitude of tasks' network designs, this article presents a distributed knowledge-sharing framework called tensor ring multitask learning (TRMTL), in which the relationship between knowledge sharing and original weight matrices is cut up. The framework of TRMTL is flexible, which is not only capable of sharing knowledge across heterogenous networks but also able to jointly learn tasks with varied input sizes, significantly improving performances of data-insufficient tasks. Comprehensive experiments on challenging datasets are conducted to empirically validate the effectiveness, efficiency, and flexibility of TRMTL in dealing with the disparities in MTL.
Collapse
|
9
|
Zhu Z, Wang Z, Li D, Du W. Globalized Multiple Balanced Subsets With Collaborative Learning for Imbalanced Data. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:2407-2417. [PMID: 32609619 DOI: 10.1109/tcyb.2020.3001158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The skewed distribution of data brings difficulties to classify minority and majority samples in the imbalanced problem. The balanced bagging randomly undersampes majority samples several times and combines the selected majority samples with minority samples to form several balanced subsets, in which the numbers of minority and majority samples are roughly equal. However, the balanced bagging is the lack of a unified learning framework. Moreover, it fails to concern the connection of all subsets and the global information of the entire data distribution. To this end, this article puts several balanced subsets into an effective learning framework with a criterion function. In the learning framework, one regularization term called RS establishes the connection and realizes the collaborative learning of all subsets by requiring the consistent outputs of the minority samples in different subsets. Besides, another regularization term called RW provides the global information to each basic classifier by reducing the difference between the direction of the solution vector in each subset and that in the entire dataset. The proposed learning framework is called globalized multiple balanced subsets with collaborative learning (GMBSCL). The experimental results validate the effectiveness of the proposed GMBSCL.
Collapse
|
10
|
Zhao H, Sun X, Dong J, Chen C, Dong Z. Highlight Every Step: Knowledge Distillation via Collaborative Teaching. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:2070-2081. [PMID: 32721909 DOI: 10.1109/tcyb.2020.3007506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High storage and computational costs obstruct deep neural networks to be deployed on resource-constrained devices. Knowledge distillation (KD) aims to train a compact student network by transferring knowledge from a larger pretrained teacher model. However, most existing methods on KD ignore the valuable information among the training process associated with training results. In this article, we provide a new collaborative teaching KD (CTKD) strategy which employs two special teachers. Specifically, one teacher trained from scratch (i.e., scratch teacher) assists the student step by step using its temporary outputs. It forces the student to approach the optimal path toward the final logits with high accuracy. The other pretrained teacher (i.e., expert teacher) guides the student to focus on a critical region that is more useful for the task. The combination of the knowledge from two special teachers can significantly improve the performance of the student network in KD. The results of experiments on CIFAR-10, CIFAR-100, SVHN, Tiny ImageNet, and ImageNet datasets verify that the proposed KD method is efficient and achieves state-of-the-art performance.
Collapse
|
11
|
Multiscale Feature Fusion Network Incorporating 3D Self-Attention for Hyperspectral Image Classification. REMOTE SENSING 2022. [DOI: 10.3390/rs14030742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, the deep learning-based hyperspectral image (HSI) classification method has achieved great success, and the convolutional neural network (CNN) method has achieved good classification performance in the HSI classification task. However, the convolutional operation only works with local neighborhoods, and is effective in extracting local features. It is difficult to capture interactive features over long distances, which affects the accuracy of classification to some extent. At the same time, the data from HSI have the characteristics of three-dimensionality, redundancy, and noise. To solve these problems, we propose a 3D self-attention multiscale feature fusion network (3DSA-MFN) that integrates 3D multi-head self-attention. 3DSA-MFN first uses different sized convolution kernels to extract multiscale features, samples the different granularities of the feature map, and effectively fuses the spatial and spectral features of the feature map. Then, we propose an improved 3D multi-head self-attention mechanism that provides local feature details for the self-attention branch, and fully exploits the context of the input matrix. To verify the performance of the proposed method, we compare it with six current methods on three public datasets. The experimental results show that the proposed 3DSA-MFN achieves competitive classification and highlights the HSI classification task.
Collapse
|
12
|
A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification. REMOTE SENSING 2021. [DOI: 10.3390/rs13224621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multifarious hyperspectral image (HSI) classification methods based on convolutional neural networks (CNN) have been gradually proposed and achieve a promising classification performance. However, hyperspectral image classification still suffers from various challenges, including abundant redundant information, insufficient spectral-spatial representation, irregular class distribution, and so forth. To address these issues, we propose a novel 2D-3D CNN with spectral-spatial multi-scale feature fusion for hyperspectral image classification, which consists of two feature extraction streams, a feature fusion module as well as a classification scheme. First, we employ two diverse backbone modules for feature representation, that is, the spectral feature and the spatial feature extraction streams. The former utilizes a hierarchical feature extraction module to capture multi-scale spectral features, while the latter extracts multi-stage spatial features by introducing a multi-level fusion structure. With these network units, the category attribute information of HSI can be fully excavated. Then, to output more complete and robust information for classification, a multi-scale spectral-spatial-semantic feature fusion module is presented based on a Decomposition-Reconstruction structure. Last of all, we innovate a classification scheme to lift the classification accuracy. Experimental results on three public datasets demonstrate that the proposed method outperforms the state-of-the-art methods.
Collapse
|
13
|
Multi-fidelity evolutionary multitasking optimization for hyperspectral endmember extraction. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Dual Attention Feature Fusion and Adaptive Context for Accurate Segmentation of Very High-Resolution Remote Sensing Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13183715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Land cover classification of high-resolution remote sensing images aims to obtain pixel-level land cover understanding, which is often modeled as semantic segmentation of remote sensing images. In recent years, convolutional network (CNN)-based land cover classification methods have achieved great advancement. However, previous methods fail to generate fine segmentation results, especially for the object boundary pixels. In order to obtain boundary-preserving predictions, we first propose to incorporate spatially adapting contextual cues. In this way, objects with similar appearance can be effectively distinguished with the extracted global contextual cues, which are very helpful to identify pixels near object boundaries. On this basis, low-level spatial details and high-level semantic cues are effectively fused with the help of our proposed dual attention mechanism. Concretely, when fusing multi-level features, we utilize the dual attention feature fusion module based on both spatial and channel attention mechanisms to relieve the influence of the large gap, and further improve the segmentation accuracy of pixels near object boundaries. Extensive experiments were carried out on the ISPRS 2D Semantic Labeling Vaihingen data and GaoFen-2 data to demonstrate the effectiveness of our proposed method. Our method achieves better performance compared with other state-of-the-art methods.
Collapse
|
15
|
Wu Z, Sun J, Zhang Y, Zhu Y, Li J, Plaza A, Benediktsson JA, Wei Z. Scheduling-Guided Automatic Processing of Massive Hyperspectral Image Classification on Cloud Computing Architectures. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:3588-3601. [PMID: 33119530 DOI: 10.1109/tcyb.2020.3026673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume.
Collapse
|
16
|
Hong D, Yokoya N, Chanussot J, Xu J, Zhu XX. Joint and Progressive Subspace Analysis (JPSA) With Spatial-Spectral Manifold Alignment for Semisupervised Hyperspectral Dimensionality Reduction. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:3602-3615. [PMID: 33175688 DOI: 10.1109/tcyb.2020.3028931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional nonlinear subspace learning techniques (e.g., manifold learning) usually introduce some drawbacks in explainability (explicit mapping) and cost effectiveness (linearization), generalization capability (out-of-sample), and representability (spatial-spectral discrimination). To overcome these shortcomings, a novel linearized subspace analysis technique with spatial-spectral manifold alignment is developed for a semisupervised hyperspectral dimensionality reduction (HDR), called joint and progressive subspace analysis (JPSA). The JPSA learns a high-level, semantically meaningful, joint spatial-spectral feature representation from hyperspectral (HS) data by: 1) jointly learning latent subspaces and a linear classifier to find an effective projection direction favorable for classification; 2) progressively searching several intermediate states of subspaces to approach an optimal mapping from the original space to a potential more discriminative subspace; and 3) spatially and spectrally aligning a manifold structure in each learned latent subspace in order to preserve the same or similar topological property between the compressed data and the original data. A simple but effective classifier, that is, nearest neighbor (NN), is explored as a potential application for validating the algorithm performance of different HDR approaches. Extensive experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely used HS datasets: 1) Indian Pines (92.98%) and 2) the University of Houston (86.09%) in comparison with previous state-of-the-art HDR methods. The demo of this basic work (i.e., ECCV2018) is openly available at https://github.com/danfenghong/ECCV2018_J-Play.
Collapse
|
17
|
Li Y, Zhang Y, Zhu Z. Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:1756-1768. [PMID: 32413949 DOI: 10.1109/tcyb.2020.2989241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to its various application potentials, the remote sensing image scene classification (RSSC) has attracted a broad range of interests. While the deep convolutional neural network (CNN) has recently achieved tremendous success in RSSC, its superior performances highly depend on a large number of accurately labeled samples which require lots of time and manpower to generate for a large-scale remote sensing image scene dataset. In contrast, it is not only relatively easy to collect coarse and noisy labels but also inevitable to introduce label noise when collecting large-scale annotated data in the remote sensing scenario. Therefore, it is of great practical importance to robustly learn a superior CNN-based classification model from the remote sensing image scene dataset containing non-negligible or even significant error labels. To this end, this article proposes a new RSSC-oriented error-tolerant deep learning (RSSC-ETDL) approach to mitigate the adverse effect of incorrect labels of the remote sensing image scene dataset. In our proposed RSSC-ETDL method, learning multiview CNNs and correcting error labels are alternatively conducted in an iterative manner. It is noted that to make the alternative scheme work effectively, we propose a novel adaptive multifeature collaborative representation classifier (AMF-CRC) that benefits from adaptively combining multiple features of CNNs to correct the labels of uncertain samples. To quantitatively evaluate the performance of error-tolerant methods in the remote sensing domain, we construct remote sensing image scene datasets with: 1) simulated noisy labels by corrupting the open datasets with varying error rates and 2) real noisy labels by deploying the greedy annotation strategies that are practically used to accelerate the process of annotating remote sensing image scene datasets. Extensive experiments on these datasets demonstrate that our proposed RSSC-ETDL approach outperforms the state-of-the-art approaches.
Collapse
|
18
|
Dual-Weighted Kernel Extreme Learning Machine for Hyperspectral Imagery Classification. REMOTE SENSING 2021. [DOI: 10.3390/rs13030508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to its excellent performance in high-dimensional space, the kernel extreme learning machine has been widely used in pattern recognition and machine learning fields. In this paper, we propose a dual-weighted kernel extreme learning machine for hyperspectral imagery classification. First, diverse spatial features are extracted by guided filtering. Then, the spatial features and spectral features are composited by a weighted kernel summation form. Finally, the weighted extreme learning machine is employed for the hyperspectral imagery classification task. This dual-weighted framework guarantees that the subtle spatial features are extracted, while the importance of minority samples is emphasized. Experiments carried on three public data sets demonstrate that the proposed dual-weighted kernel extreme learning machine (DW-KELM) performs better than other kernel methods, in terms of accuracy of classification, and can achieve satisfactory results.
Collapse
|
19
|
Dian R, Li S, Fang L, Lu T, Bioucas-Dias JM. Nonlocal Sparse Tensor Factorization for Semiblind Hyperspectral and Multispectral Image Fusion. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4469-4480. [PMID: 31794410 DOI: 10.1109/tcyb.2019.2951572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combining a high-spatial-resolution multispectral image (HR-MSI) with a low-spatial-resolution hyperspectral image (LR-HSI) has become a common way to enhance the spatial resolution of the HSI. The existing state-of-the-art LR-HSI and HR-MSI fusion methods are mostly based on the matrix factorization, where the matrix data representation may be hard to fully make use of the inherent structures of 3-D HSI. We propose a nonlocal sparse tensor factorization approach, called the NLSTF_SMBF, for the semiblind fusion of HSI and MSI. The proposed method decomposes the HSI into smaller full-band patches (FBPs), which, in turn, are factored as dictionaries of the three HSI modes and a sparse core tensor. This decomposition allows to solve the fusion problem as estimating a sparse core tensor and three dictionaries for each FBP. Similar FBPs are clustered together, and they are assumed to share the same dictionaries to make use of the nonlocal self-similarities of the HSI. For each group, we learn the dictionaries from the observed HR-MSI and LR-HSI. The corresponding sparse core tensor of each FBP is computed via tensor sparse coding. Two distinctive features of NLSTF_SMBF are that: 1) it is blind with respect to the point spread function (PSF) of the hyperspectral sensor and 2) it copes with spatially variant PSFs. The experimental results provide the evidence of the advantages of the NLSTF_SMBF method over the existing state-of-the-art methods, namely, in semiblind scenarios.
Collapse
|
20
|
Zhong Z, Li J, Clausi DA, Wong A. Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:3318-3329. [PMID: 31170085 DOI: 10.1109/tcyb.2019.2915094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we address the hyperspectral image (HSI) classification task with a generative adversarial network and conditional random field (GAN-CRF)-based framework, which integrates a semisupervised deep learning and a probabilistic graphical model, and make three contributions. First, we design four types of convolutional and transposed convolutional layers that consider the characteristics of HSIs to help with extracting discriminative features from limited numbers of labeled HSI samples. Second, we construct semisupervised generative adversarial networks (GANs) to alleviate the shortage of training samples by adding labels to them and implicitly reconstructing real HSI data distribution through adversarial training. Third, we build dense conditional random fields (CRFs) on top of the random variables that are initialized to the softmax predictions of the trained GANs and are conditioned on HSIs to refine classification maps. This semisupervised framework leverages the merits of discriminative and generative models through a game-theoretical approach. Moreover, even though we used very small numbers of labeled training HSI samples from the two most challenging and extensively studied datasets, the experimental results demonstrated that spectral-spatial GAN-CRF (SS-GAN-CRF) models achieved top-ranking accuracy for semisupervised HSI classification.
Collapse
|
21
|
Residual Group Channel and Space Attention Network for Hyperspectral Image Classification. REMOTE SENSING 2020. [DOI: 10.3390/rs12122035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, deep learning methods based on three-dimensional (3-D) convolution have been widely used in the hyperspectral image (HSI) classification tasks and shown good classification performance. However, affected by the irregular distribution of various classes in HSI datasets, most previous 3-D convolutional neural network (CNN)-based models require more training samples to obtain better classification accuracies. In addition, as the network deepens, which leads to the spatial resolution of feature maps gradually decreasing, much useful information may be lost during the training process. Therefore, how to ensure efficient network training is key to the HSI classification tasks. To address the issue mentioned above, in this paper, we proposed a 3-DCNN-based residual group channel and space attention network (RGCSA) for HSI classification. Firstly, the proposed bottom-up top-down attention structure with the residual connection can improve network training efficiency by optimizing channel-wise and spatial-wise features throughout the whole training process. Secondly, the proposed residual group channel-wise attention module can reduce the possibility of losing useful information, and the novel spatial-wise attention module can extract context information to strengthen the spatial features. Furthermore, our proposed RGCSA network only needs few training samples to achieve higher classification accuracies than previous 3-D-CNN-based networks. The experimental results on three commonly used HSI datasets demonstrate the superiority of our proposed network based on the attention mechanism and the effectiveness of the proposed channel-wise and spatial-wise attention modules for HSI classification. The code and configurations are released at Github.com.
Collapse
|
22
|
Yang M, Qu Q, Shen Y, Lei K, Zhu J. Cross-domain aspect/sentiment-aware abstractive review summarization by combining topic modeling and deep reinforcement learning. Neural Comput Appl 2020. [DOI: 10.1007/s00521-018-3825-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
|
24
|
|
25
|
Multi-Spectral Image Classification Based on an Object-Based Active Learning Approach. REMOTE SENSING 2020. [DOI: 10.3390/rs12030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In remote sensing, active learning (AL) is considered to be an effective solution to the problem of producing sufficient classification accuracy with a limited number of training samples. Though this field has been extensively studied, most papers exist in the pixel-based paradigm. In object-based image analysis (OBIA), AL has been comparatively less studied. This paper aims to propose a new AL method for selecting object-based samples. The proposed AL method solves the problem of how to identify the most informative segment-samples so that classification performance can be optimized. The advantage of this algorithm is that informativeness can be estimated by using various object-based features. The new approach has three key steps. First, a series of one-against-one binary random forest (RF) classifiers are initialized by using a small initial training set. This strategy allows for the estimation of the classification uncertainty in great detail. Second, each tested sample is processed by using the binary RFs, and a classification uncertainty value that can reflect informativeness is derived. Third, the samples with high uncertainty values are selected and then labeled by a supervisor. They are subsequently added into the training set, based on which the binary RFs are re-trained for the next iteration. The whole procedure is iterated until a stopping criterion is met. To validate the proposed method, three pairs of multi-spectral remote sensing images with different landscape patterns were used in this experiment. The results indicate that the proposed method can outperform other state-of-the-art AL methods. To be more specific, the highest overall accuracies for the three datasets were all obtained by using the proposed AL method, and the values were 88.32%, 85.77%, and 93.12% for “T1,” “T2,” and “T3,” respectively. Furthermore, since object-based features have a serious impact on the performance of AL, eight combinations of four feature types are investigated. The results show that the best feature combination is different for the three datasets due to the variation of the feature separability.
Collapse
|
26
|
Han M, Cong R, Li X, Fu H, Lei J. Joint spatial-spectral hyperspectral image classification based on convolutional neural network. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2018.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Kernel Entropy Component Analysis-Based Robust Hyperspectral Image Supervised Classification. REMOTE SENSING 2019. [DOI: 10.3390/rs11232823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, the “noisy label" problem has become a hot topic in supervised classification of hyperspectral images (HSI). Nonetheless, how to effectively remove noisy labels from a training set with mislabeled samples is a nontrivial task for a multitude of supervised classification methods in HSI processing. This paper is the first to propose a kernel entropy component analysis (KECA)-based method for noisy label detection that can remove noisy labels of a training set with mislabeled samples and improve performance of supervised classification in HSI, which consists of the following steps. First, the kernel matrix of training samples with noisy labels for each class can be achieved by exploiting a nonlinear mapping function to enlarge the sample separability. Then, the eigenvectors and eigenvalues of the kernel matrix can be obtained by employing symmetric matrix decomposition. Next, the entropy corresponding to each training sample in each class is calculated based on entropy component analysis using the eigenvalues arranged in descending order and the corresponding eigenvectors. Finally, the sigmoid function is applied to the entropy of each sample to obtain the probability distribution. Meanwhile, a decision probability threshold is introduced into the above probability distribution to cleanse the noisy labels of training samples with mislabeled samples for each class. The effectiveness of the proposed method is evaluated by support vector machines on several real hyperspectral data sets. The experimental results show that the proposed KECA method is more efficient than other noisy label detection methods in terms of improving performance of the supervised classification of HSI.
Collapse
|
28
|
Nath A, Mawlong P, Saha G. River body extraction using convolutional neural network. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2019. [DOI: 10.1080/02522667.2019.1704522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amitabha Nath
- Department of Information Technology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Peter Mawlong
- Department of Information Technology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Goutam Saha
- Department of Information Technology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|
29
|
Jeyaraj PR, Nadar ERS. Deep Boltzmann machine algorithm for accurate medical image analysis for classification of cancerous region. COGNITIVE COMPUTATION AND SYSTEMS 2019. [DOI: 10.1049/ccs.2019.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Pandia Rajan Jeyaraj
- Department of Electrical and Electronics EngineeringMepco Schlenk Engineering College (Autonomous)Sivakasi626005Tamil NaduIndia
| | - Edward Rajan Samuel Nadar
- Department of Electrical and Electronics EngineeringMepco Schlenk Engineering College (Autonomous)Sivakasi626005Tamil NaduIndia
| |
Collapse
|
30
|
|
31
|
A Novel Hyperspectral Image Classification Pattern Using Random Patches Convolution and Local Covariance. REMOTE SENSING 2019. [DOI: 10.3390/rs11161954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Today, more and more deep learning frameworks are being applied to hyperspectral image classification tasks and have achieved great results. However, such approaches are still hampered by long training times. Traditional spectral–spatial hyperspectral image classification only utilizes spectral features at the pixel level, without considering the correlation between local spectral signatures. Our article has tested a novel hyperspectral image classification pattern, using random-patches convolution and local covariance (RPCC). The RPCC is an effective two-branch method that, on the one hand, obtains a specified number of convolution kernels from the image space through a random strategy and, on the other hand, constructs a covariance matrix between different spectral bands by clustering local neighboring pixels. In our method, the spatial features come from multi-scale and multi-level convolutional layers. The spectral features represent the correlations between different bands. We use the support vector machine as well as spectral and spatial fusion matrices to obtain classification results. Through experiments, RPCC is tested with five excellent methods on three public data-sets. Quantitative and qualitative evaluation indicators indicate that the accuracy of our RPCC method can match or exceed the current state-of-the-art methods.
Collapse
|
32
|
Li J, Zhang B, Lu G, Ren H, Zhang D. Visual Classification With Multikernel Shared Gaussian Process Latent Variable Model. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:2886-2899. [PMID: 29994781 DOI: 10.1109/tcyb.2018.2831457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multiview learning methods often achieve improvement compared with single-view-based approaches in many applications. Due to the powerful nonlinear ability and probabilistic perspective of Gaussian process (GP), some GP-based multiview efforts were presented. However, most of these methods make a strong assumption on the kernel function (e.g., radial basis function), which limits the capacity of the real data modeling. In order to address this issue, in this paper, we propose a novel multiview approach by combining a multikernel and GP latent variable model. Instead of designing a deterministic kernel function, multiple kernel functions are established to automatically adapt various types of data. Considering a simple way of obtaining latent variables at the testing stage, a projection from the observed space to the latent space as a back constraint has also been simultaneously introduced into the proposed method. Additionally, different from some existing methods which apply the classifiers off-line, a hinge loss is embedded into the model to jointly learn the classification hyperplane, encouraging the latent variables belonging to the different classes to be separated. An efficient algorithm based on the gradient decent technique is constructed to optimize our method. Finally, we apply the proposed approach to three real-world datasets and the associated results demonstrate the effectiveness and superiority of our model compared with other state-of-the-art methods.
Collapse
|
33
|
Xie T, Li S, Sun B. Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:44-56. [PMID: 31329555 DOI: 10.1109/tip.2019.2926736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hyperspectral images (HSIs) are often degraded by a mixture of various types of noise during the imaging process, including Gaussian noise, impulse noise, and stripes. Such complex noise could plague the subsequent HSIs processing. Generally, most HSI denoising methods formulate sparsity optimization problems with convex norm constraints, which over-penalize large entries of vectors, and may result in a biased solution. In this paper, a nonconvex regularized low-rank and sparse matrix decomposition (NonRLRS) method is proposed for HSI denoising, which can simultaneously remove the Gaussian noise, impulse noise, dead lines, and stripes. The NonRLRS aims to decompose the degraded HSI, expressed in a matrix form, into low-rank and sparse components with a robust formulation. To enhance the sparsity in both the intrinsic low-rank structure and the sparse corruptions, a novel nonconvex regularizer named as normalized ε -penalty, is presented, which can adaptively shrink each entry. In addition, an effective algorithm based on the majorization minimization (MM) is developed to solve the resulting nonconvex optimization problem. Specifically, the MM algorithm first substitutes the nonconvex objective function with the surrogate upper-bound in each iteration, and then minimizes the constructed surrogate function, which enables the nonconvex problem to be solved in the framework of reweighted technique. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed method.
Collapse
|
34
|
Luo F, Du B, Zhang L, Zhang L, Tao D. Feature Learning Using Spatial-Spectral Hypergraph Discriminant Analysis for Hyperspectral Image. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:2406-2419. [PMID: 29994036 DOI: 10.1109/tcyb.2018.2810806] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyperspectral image (HSI) contains a large number of spatial-spectral information, which will make the traditional classification methods face an enormous challenge to discriminate the types of land-cover. Feature learning is very effective to improve the classification performances. However, the current feature learning approaches are mostly based on a simple intrinsic structure. To represent the complex intrinsic spatial-spectral of HSI, a novel feature learning algorithm, termed spatial-spectral hypergraph discriminant analysis (SSHGDA), has been proposed on the basis of spatial-spectral information, discriminant information, and hypergraph learning. SSHGDA constructs a reconstruction between-class scatter matrix, a weighted within-class scatter matrix, an intraclass spatial-spectral hypergraph, and an interclass spatial-spectral hypergraph to represent the intrinsic properties of HSI. Then, in low-dimensional space, a feature learning model is designed to compact the intraclass information and separate the interclass information. With this model, an optimal projection matrix can be obtained to extract the spatial-spectral features of HSI. SSHGDA can effectively reveal the complex spatial-spectral structures of HSI and enhance the discriminating power of features for land-cover classification. Experimental results on the Indian Pines and PaviaU HSI data sets show that SSHGDA can achieve better classification accuracies in comparison with some state-of-the-art methods.
Collapse
|
35
|
Wang X, Wang S, Huang Z, Du Y. Structure regularized sparse coding for data representation. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2019.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Peng J, Li L, Tang YY. Maximum Likelihood Estimation-Based Joint Sparse Representation for the Classification of Hyperspectral Remote Sensing Images. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1790-1802. [PMID: 30371395 DOI: 10.1109/tnnls.2018.2874432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A joint sparse representation (JSR) method has shown superior performance for the classification of hyperspectral images (HSIs). However, it is prone to be affected by outliers in the HSI spatial neighborhood. In order to improve the robustness of JSR, we propose a maximum likelihood estimation (MLE)-based JSR (MLEJSR) model, which replaces the traditional quadratic loss function with an MLE-like estimator for measuring the joint approximation error. The MLE-like estimator is actually a function of coding residuals. Given some priors on the coding residuals, the MLEJSR model can be easily converted to an iteratively reweighted JSR problem. Choosing a reasonable weight function, the effect of inhomogeneous neighboring pixels or outliers can be dramatically reduced. We provide a theoretical analysis of MLEJSR from the viewpoint of recovery error and evaluate its empirical performance on three public hyperspectral data sets. Both the theoretical and experimental results demonstrate the effectiveness of our proposed MLEJSR method, especially in the case of large noise.
Collapse
|
37
|
Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J Cancer Res Clin Oncol 2019; 145:829-837. [PMID: 30603908 DOI: 10.1007/s00432-018-02834-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images. METHODS To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image. RESULTS The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained. CONCLUSIONS We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.
Collapse
Affiliation(s)
- Pandia Rajan Jeyaraj
- Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, India.
| | - Edward Rajan Samuel Nadar
- Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, India
| |
Collapse
|
38
|
Fast Spectral Clustering for Unsupervised Hyperspectral Image Classification. REMOTE SENSING 2019. [DOI: 10.3390/rs11040399] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperspectral image classification is a challenging and significant domain in the field of remote sensing with numerous applications in agriculture, environmental science, mineralogy, and surveillance. In the past years, a growing number of advanced hyperspectral remote sensing image classification techniques based on manifold learning, sparse representation and deep learning have been proposed and reported a good performance in accuracy and efficiency on state-of-the-art public datasets. However, most existing methods still face challenges in dealing with large-scale hyperspectral image datasets due to their high computational complexity. In this work, we propose an improved spectral clustering method for large-scale hyperspectral image classification without any prior information. The proposed algorithm introduces two efficient approximation techniques based on Nyström extension and anchor-based graph to construct the affinity matrix. We also propose an effective solution to solve the eigenvalue decomposition problem by multiplicative update optimization. Experiments on both the synthetic datasets and the hyperspectral image datasets were conducted to demonstrate the efficiency and effectiveness of the proposed algorithm.
Collapse
|
39
|
Impact of Texture Information on Crop Classification with Machine Learning and UAV Images. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unmanned aerial vehicle (UAV) images that can provide thematic information at much higher spatial and temporal resolutions than satellite images have great potential in crop classification. Due to the ultra-high spatial resolution of UAV images, spatial contextual information such as texture is often used for crop classification. From a data availability viewpoint, it is not always possible to acquire time-series UAV images due to limited accessibility to the study area. Thus, it is necessary to improve classification performance for situations when a single or minimum number of UAV images are available for crop classification. In this study, we investigate the potential of gray-level co-occurrence matrix (GLCM)-based texture information for crop classification with time-series UAV images and machine learning classifiers including random forest and support vector machine. In particular, the impact of combining texture and spectral information on the classification performance is evaluated for cases that use only one UAV image or multi-temporal images as input. A case study of crop classification in Anbandegi of Korea was conducted for the above comparisons. The best classification accuracy was achieved when multi-temporal UAV images which can fully account for the growth cycles of crops were combined with GLCM-based texture features. However, the impact of the utilization of texture information was not significant. In contrast, when one August UAV image was used for crop classification, the utilization of texture information significantly affected the classification performance. Classification using texture features extracted from GLCM with larger kernel size significantly improved classification accuracy, an improvement of 7.72%p in overall accuracy for the support vector machine classifier, compared with classification based solely on spectral information. These results indicate the usefulness of texture information for classification of ultra-high-spatial-resolution UAV images, particularly when acquisition of time-series UAV images is difficult and only one UAV image is used for crop classification.
Collapse
|
40
|
Yang S, Feng Z, Wang M, Zhang K. Self-Paced Learning-Based Probability Subspace Projection for Hyperspectral Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:630-635. [PMID: 29994488 DOI: 10.1109/tnnls.2018.2841009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper a self-paced learning-based probability subspace projection (SL-PSP) method is proposed for hyperspectral image classification. First, a probability label is assigned for each pixel, and a risk is assigned for each labeled pixel. Then, two regularizers are developed from a self-paced maximum margin and a probability label graph, respectively. The first regularizer can increase the discriminant ability of features by gradually involving the most confident pixels into the projection to simultaneously push away heterogeneous neighbors and pull inhomogeneous neighbors. The second regularizer adopts a relaxed clustering assumption to make avail of unlabeled samples, thus accurately revealing the affinity between mixed pixels and achieving accurate classification with very few labeled samples. Several hyperspectral data sets are used to verify the effectiveness of SL-PSP, and the experimental results show that it can achieve the state-of-the-art results in terms of accuracy and stability.
Collapse
|
41
|
Nonlocal Tensor Sparse Representation and Low-Rank Regularization for Hyperspectral Image Compressive Sensing Reconstruction. REMOTE SENSING 2019. [DOI: 10.3390/rs11020193] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyperspectral image compressive sensing reconstruction (HSI-CSR) is an important issue in remote sensing, and has recently been investigated increasingly by the sparsity prior based approaches. However, most of the available HSI-CSR methods consider the sparsity prior in spatial and spectral vector domains via vectorizing hyperspectral cubes along a certain dimension. Besides, in most previous works, little attention has been paid to exploiting the underlying nonlocal structure in spatial domain of the HSI. In this paper, we propose a nonlocal tensor sparse and low-rank regularization (NTSRLR) approach, which can encode essential structured sparsity of an HSI and explore its advantages for HSI-CSR task. Specifically, we study how to utilize reasonably the l 1 -based sparsity of core tensor and tensor nuclear norm function as tensor sparse and low-rank regularization, respectively, to describe the nonlocal spatial-spectral correlation hidden in an HSI. To study the minimization problem of the proposed algorithm, we design a fast implementation strategy based on the alternative direction multiplier method (ADMM) technique. Experimental results on various HSI datasets verify that the proposed HSI-CSR algorithm can significantly outperform existing state-of-the-art CSR techniques for HSI recovery.
Collapse
|
42
|
|
43
|
Convolutional Neural Network-Based Remote Sensing Images Segmentation Method for Extracting Winter Wheat Spatial Distribution. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When extracting winter wheat spatial distribution by using convolutional neural network (CNN) from Gaofen-2 (GF-2) remote sensing images, accurate identification of edge pixel is the key to improving the result accuracy. In this paper, an approach for extracting accurate winter wheat spatial distribution based on CNN is proposed. A hybrid structure convolutional neural network (HSCNN) was first constructed, which consists of two independent sub-networks of different depths. The deeper sub-network was used to extract the pixels present in the interior of the winter wheat field, whereas the shallower sub-network extracts the pixels at the edge of the field. The model was trained by classification-based learning and used in image segmentation for obtaining the distribution of winter wheat. Experiments were performed on 39 GF-2 images of Shandong province captured during 2017–2018, with SegNet and DeepLab as comparison models. As shown by the results, the average accuracy of SegNet, DeepLab, and HSCNN was 0.765, 0.853, and 0.912, respectively. HSCNN was equally as accurate as DeepLab and superior to SegNet for identifying interior pixels, and its identification of the edge pixels was significantly better than the two comparison models, which showed the superiority of HSCNN in the identification of winter wheat spatial distribution.
Collapse
|
44
|
Hyperspectral Classification via Superpixel Kernel Learning-Based Low Rank Representation. REMOTE SENSING 2018. [DOI: 10.3390/rs10101639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High dimensional image classification is a fundamental technique for information retrieval from hyperspectral remote sensing data. However, data quality is readily affected by the atmosphere and noise in the imaging process, which makes it difficult to achieve good classification performance. In this paper, multiple kernel learning-based low rank representation at superpixel level (Sp_MKL_LRR) is proposed to improve the classification accuracy for hyperspectral images. Superpixels are generated first from the hyperspectral image to reduce noise effect and form homogeneous regions. An optimal superpixel kernel parameter is then selected by the kernel matrix using a multiple kernel learning framework. Finally, a kernel low rank representation is applied to classify the hyperspectral image. The proposed method offers two advantages. (1) The global correlation constraint is exploited by the low rank representation, while the local neighborhood information is extracted as the superpixel kernel adaptively learns the high-dimensional manifold features of the samples in each class; (2) It can meet the challenges of multiscale feature learning and adaptive parameter determination in the conventional kernel methods. Experimental results on several hyperspectral image datasets demonstrate that the proposed method outperforms several state-of-the-art classifiers tested in terms of overall accuracy, average accuracy, and kappa statistic.
Collapse
|
45
|
Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs. REMOTE SENSING 2018. [DOI: 10.3390/rs10081271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperspectral image classification has been acknowledged as the fundamental and challenging task of hyperspectral data processing. The abundance of spectral and spatial information has provided great opportunities to effectively characterize and identify ground materials. In this paper, we propose a spectral and spatial classification framework for hyperspectral images based on Random Multi-Graphs (RMGs). The RMG is a graph-based ensemble learning method, which is rarely considered in hyperspectral image classification. It is empirically verified that the semi-supervised RMG deals well with small sample setting problems. This kind of problem is very common in hyperspectral image applications. In the proposed method, spatial features are extracted based on linear prediction error analysis and local binary patterns; spatial features and spectral features are then stacked into high dimensional vectors. The high dimensional vectors are fed into the RMG for classification. By randomly selecting a subset of features to create a graph, the proposed method can achieve excellent classification performance. The experiments on three real hyperspectral datasets have demonstrated that the proposed method exhibits better performance than several closely related methods.
Collapse
|
46
|
Zhang C, Cheng J, Tian Q. Incremental Codebook Adaptation for Visual Representation and Categorization. IEEE TRANSACTIONS ON CYBERNETICS 2018; 48:2012-2023. [PMID: 28749362 DOI: 10.1109/tcyb.2017.2726079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bag-of-visual-words model is widely used for visual content analysis. For visual data, the codebook plays an important role for efficient representation. However, the codebook has to be relearned with the changes of training images. Once the codebook is changed, the encoding parameters of local features have to be recomputed. To alleviate this problem, in this paper, we propose an incremental codebook adaptation method for efficient visual representation. Instead of learning a new codebook, we gradually adapt a prelearned codebook using new images in an incremental way. To make use of the prelearned codebook, we try to make changes to the prelearned codebook with sparsity constraint and low-rank correlation. Besides, we also encode visually similar local features within a neighborhood to take advantage of locality information and ensure the encoded parameters are consistent. To evaluate the effectiveness of the proposed method, we apply the proposed method for categorization tasks on several public image datasets. Experimental results prove the effectiveness and usefulness of the proposed method over other codebook-based methods.
Collapse
|
47
|
Yu H, Gao L, Liao W, Zhang B. Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1695. [PMID: 29795020 PMCID: PMC6021858 DOI: 10.3390/s18061695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
Abstract
Spectral-spatial classification has been widely applied for remote sensing applications, especially for hyperspectral imagery. Traditional methods mainly focus on local spatial similarity and neglect nonlocal spatial similarity. Recently, nonlocal self-similarity (NLSS) has gradually gained support since it can be used to support spatial coherence tasks. However, these methods are biased towards the direct use of spatial information as a whole, while discriminative spectral information is not well exploited. In this paper, we propose a novel method to couple both nonlocal spatial and local spectral similarity together in a single framework. In particular, the proposed approach exploits nonlocal spatial similarities by searching non-overlapped patches, whereas spectral similarity is analyzed locally within the locally discovered patches. By fusion of nonlocal and local information, we then apply group sparse representation (GSR) for classification based on a group structured prior. Experimental results on three real hyperspectral data sets demonstrate the efficiency of the proposed approach, and the improvements are significant over the methods that consider either nonlocal or local similarity.
Collapse
Affiliation(s)
- Haoyang Yu
- Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lianru Gao
- Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China.
| | - Wenzhi Liao
- Department of Telecommunications and Information Processing, IMEC-TELIN-Ghent University, 9000 Ghent, Belgium.
| | - Bing Zhang
- Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Wang Z, Sun X, Yang Z, Zhang Y, Zhu Y, Ma Y. Leaf Recognition Based on DPCNN and BOW. Neural Process Lett 2018. [DOI: 10.1007/s11063-017-9635-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Fang L, Zhuo H, Li S. Super-resolution of hyperspectral image via superpixel-based sparse representation. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.08.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Change Detection Using High Resolution Remote Sensing Images Based on Active Learning and Markov Random Fields. REMOTE SENSING 2017. [DOI: 10.3390/rs9121233] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|