1
|
Inoue S, Nobukawa S, Nishimura H, Watanabe E, Isokawa T. Multi-scale dynamics by adjusting the leaking rate to enhance the performance of deep echo state networks. Front Artif Intell 2024; 7:1397915. [PMID: 39081931 PMCID: PMC11286403 DOI: 10.3389/frai.2024.1397915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The deep echo state network (Deep-ESN) architecture, which comprises a multi-layered reservoir layer, exhibits superior performance compared to conventional echo state networks (ESNs) owing to the divergent layer-specific time-scale responses in the Deep-ESN. Although researchers have attempted to use experimental trial-and-error grid searches and Bayesian optimization methods to adjust the hyperparameters, suitable guidelines for setting hyperparameters to adjust the time scale of the dynamics in each layer from the perspective of dynamical characteristics have not been established. In this context, we hypothesized that evaluating the dependence of the multi-time-scale dynamical response on the leaking rate as a typical hyperparameter of the time scale in each neuron would help to achieve a guideline for optimizing the hyperparameters of the Deep-ESN. Method First, we set several leaking rates for each layer of the Deep-ESN and performed multi-scale entropy (MSCE) analysis to analyze the impact of the leaking rate on the dynamics in each layer. Second, we performed layer-by-layer cross-correlation analysis between adjacent layers to elucidate the structural mechanisms to enhance the performance. Results As a result, an optimum task-specific leaking rate value for producing layer-specific multi-time-scale responses and a queue structure with layer-to-layer signal transmission delays for retaining past applied input enhance the Deep-ESN prediction performance. Discussion These findings can help to establish ideal design guidelines for setting the hyperparameters of Deep-ESNs.
Collapse
Affiliation(s)
- Shuichi Inoue
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- LY Corporation, Chiyoda-ku, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | - Eiji Watanabe
- Laboratory of Neurophysiology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Hayama, Japan
| | - Teijiro Isokawa
- Graduate School of Engineering, University of Hyogo, Himeji, Japan
| |
Collapse
|
2
|
Wang H, Long X, Liu XX. fastESN: Fast Echo State Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:10487-10501. [PMID: 35482690 DOI: 10.1109/tnnls.2022.3167466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Echo state networks (ESNs) are reservoir computing-based recurrent neural networks widely used in pattern analysis and machine intelligence applications. In order to achieve high accuracy with large model capacity, ESNs usually contain a large-sized internal layer (reservoir), making the evaluation process too slow for some applications. In this work, we speed up the evaluation of ESN by building a reduced network called the fast ESN (fastESN) and achieve an ESN evaluation complexity independent of the original ESN size for the first time. FastESN is generated using three techniques. First, the high-dimensional state of the original ESN is approximated by a low-dimensional state through proper orthogonal decomposition (POD)-based projection. Second, the activation function evaluation number is reduced through the discrete empirical interpolation method (DEIM). Third, we show the directly generated fastESN has instability problems and provide a stabilization scheme as a solution. Through experiments on four popular benchmarks, we show that fastESN is able to accelerate the sparse storage-based ESN evaluation with a high parameter compression ratio and a fast evaluation speed.
Collapse
|
3
|
Na X, Ren W, Liu M, Han M. Hierarchical Echo State Network With Sparse Learning: A Method for Multidimensional Chaotic Time Series Prediction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:9302-9313. [PMID: 35333719 DOI: 10.1109/tnnls.2022.3157830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Echo state network (ESN), a type of special recurrent neural network with a large-scale randomly fixed hidden layer (called a reservoir) and an adaptable linear output layer, has been widely employed in the field of time series analysis and modeling. However, when tackling the problem of multidimensional chaotic time series prediction, due to the randomly generated rules for input and reservoir weights, not only the representation of valuable variables is enriched but also redundant and irrelevant information is accumulated inevitably. To remove the redundant components, reduce the approximate collinearity among echo-state information, and improve the generalization and stability, a new method called hierarchical ESN with sparse learning (HESN-SL) is proposed. The HESN-SL mines and captures the latent evolution patterns hidden from the dynamic system by means of layer-by-layer processing in stacked reservoirs, and leverage monotone accelerated proximal gradient algorithm to train a sparse output layer with variable selection capability. Meanwhile, we further prove that the HESN-SL satisfies the echo state property, which guarantees the stability and convergence of the proposed model when applied to time series prediction. Experimental results on two synthetic chaotic systems and a real-world meteorological dataset illustrate the proposed HESN-SL outperforms both original ESN and existing hierarchical ESN-based models for multidimensional chaotic time series prediction.
Collapse
|
4
|
Haruna J, Toshio R, Nakano N. Path integral approach to universal dynamics of reservoir computers. Phys Rev E 2023; 107:034306. [PMID: 37073052 DOI: 10.1103/physreve.107.034306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
In this work, we give a characterization of the reservoir computer (RC) by the network structure, especially the probability distribution of random coupling constants. First, based on the path integral method, we clarify the universal behavior of the random network dynamics in the thermodynamic limit, which depends only on the asymptotic behavior of the second cumulant generating functions of the network coupling constants. This result enables us to classify the random networks into several universality classes, according to the distribution function of coupling constants chosen for the networks. Interestingly, it is revealed that such a classification has a close relationship with the distribution of eigenvalues of the random coupling matrix. We also comment on the relation between our theory and some practical choices of random connectivity in the RC. Subsequently, we investigate the relationship between the RC's computational power and the network parameters for several universality classes. We perform several numerical simulations to evaluate the phase diagrams of the steady reservoir states, common-signal-induced synchronization, and the computational power in the chaotic time series inference tasks. As a result, we clarify the close relationship between these quantities, especially a remarkable computational performance near the phase transitions, which is realized even near a nonchaotic transition boundary. These results may provide us with a new perspective on the designing principle for the RC.
Collapse
Affiliation(s)
- Junichi Haruna
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Riki Toshio
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Naoto Nakano
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo 164-8525, Japan
| |
Collapse
|
5
|
Walther D, Viehweg J, Haueisen J, Mäder P. A systematic comparison of deep learning methods for EEG time series analysis. Front Neuroinform 2023; 17:1067095. [PMID: 36911074 PMCID: PMC9995756 DOI: 10.3389/fninf.2023.1067095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Analyzing time series data like EEG or MEG is challenging due to noisy, high-dimensional, and patient-specific signals. Deep learning methods have been demonstrated to be superior in analyzing time series data compared to shallow learning methods which utilize handcrafted and often subjective features. Especially, recurrent deep neural networks (RNN) are considered suitable to analyze such continuous data. However, previous studies show that they are computationally expensive and difficult to train. In contrast, feed-forward networks (FFN) have previously mostly been considered in combination with hand-crafted and problem-specific feature extractions, such as short time Fourier and discrete wavelet transform. A sought-after are easily applicable methods that efficiently analyze raw data to remove the need for problem-specific adaptations. In this work, we systematically compare RNN and FFN topologies as well as advanced architectural concepts on multiple datasets with the same data preprocessing pipeline. We examine the behavior of those approaches to provide an update and guideline for researchers who deal with automated analysis of EEG time series data. To ensure that the results are meaningful, it is important to compare the presented approaches while keeping the same experimental setup, which to our knowledge was never done before. This paper is a first step toward a fairer comparison of different methodologies with EEG time series data. Our results indicate that a recurrent LSTM architecture with attention performs best on less complex tasks, while the temporal convolutional network (TCN) outperforms all the recurrent architectures on the most complex dataset yielding a 8.61% accuracy improvement. In general, we found the attention mechanism to substantially improve classification results of RNNs. Toward a light-weight and online learning-ready approach, we found extreme learning machines (ELM) to yield comparable results for the less complex tasks.
Collapse
Affiliation(s)
- Dominik Walther
- Data-Intensive Systems and Visualization Group (dAI.SY), Technische Universität Ilmenau, Ilmenau, Germany
| | - Johannes Viehweg
- Data-Intensive Systems and Visualization Group (dAI.SY), Technische Universität Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Patrick Mäder
- Data-Intensive Systems and Visualization Group (dAI.SY), Technische Universität Ilmenau, Ilmenau, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
6
|
Multiscale Echo Self-Attention Memory Network for Multivariate Time Series Classification. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Wang X, Jin Y, Hao K. Computational Modeling of Structural Synaptic Plasticity in Echo State Networks. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:11254-11266. [PMID: 33760748 DOI: 10.1109/tcyb.2021.3060466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most existing studies on computational modeling of neural plasticity have focused on synaptic plasticity. However, regulation of the internal weights in the reservoir based on synaptic plasticity often results in unstable learning dynamics. In this article, a structural synaptic plasticity learning rule is proposed to train the weights and add or remove neurons within the reservoir, which is shown to be able to alleviate the instability of the synaptic plasticity, and to contribute to increase the memory capacity of the network as well. Our experimental results also reveal that a few stronger connections may last for a longer period of time in a constantly changing network structure, and are relatively resistant to decay or disruptions in the learning process. These results are consistent with the evidence observed in biological systems. Finally, we show that an echo state network (ESN) using the proposed structural plasticity rule outperforms an ESN using synaptic plasticity and three state-of-the-art ESNs on four benchmark tasks.
Collapse
|
8
|
Bidirectional parallel echo state network for speech emotion recognition. Neural Comput Appl 2022; 34:17581-17599. [PMID: 35669535 PMCID: PMC9152839 DOI: 10.1007/s00521-022-07410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/09/2022] [Indexed: 10/28/2022]
Abstract
Speech is an effective way for communicating and exchanging complex information between humans. Speech signal has involved a great attention in human-computer interaction. Therefore, emotion recognition from speech has become a hot research topic in the field of interacting machines with humans. In this paper, we proposed a novel speech emotion recognition system by adopting multivariate time series handcrafted feature representation from speech signals. Bidirectional echo state network with two parallel reservoir layers has been applied to capture additional independent information. The parallel reservoirs produce multiple representations for each direction from the bidirectional data with two stages of concatenation. The sparse random projection approach has been adopted to reduce the high-dimensional sparse output for each direction separately from both reservoirs. Random over-sampling and random under-sampling methods are used to overcome the imbalanced nature of the used speech emotion datasets. The performance of the proposed parallel ESN model is evaluated from the speaker-independent experiments on EMO-DB, SAVEE, RAVDESS, and FAU Aibo datasets. The results show that the proposed SER model is superior to the single reservoir and the state-of-the-art studies.
Collapse
|
9
|
Wu Z, Li Q, Zhang H. Chain-Structure Echo State Network With Stochastic Optimization: Methodology and Application. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:1974-1985. [PMID: 34324424 DOI: 10.1109/tnnls.2021.3098866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this article, a chain-structure echo state network (CESN) with stacked subnetwork modules is newly proposed as a new kind of deep recurrent neural network for multivariate time series prediction. Motivated by the philosophy of "divide and conquer," the related input vectors are first divided into clusters, and the final output results of CESN are then integrated by successively learning the predicted values of each clustered variable. Network structure, mathematical model, training mechanism, and stability analysis are, respectively, studied for the proposed CESN. In the training stage, least-squares regression is first used to pretrain the output weights in a module-by-module way, and stochastic local search (SLS) is developed to fine-tune network weights toward global optima. The loss function of CESN can be effectively reduced by SLS. To avoid overfitting, the optimization process is stopped when the validation error starts to increase. Finally, SLS-CESN is evaluated in chaos prediction benchmarks and real applications. Four different examples are given to verify the effectiveness and robustness of CESN and SLS-CESN.
Collapse
|
10
|
Wang L, Su Z, Qiao J, Deng F. A pseudo-inverse decomposition-based self-organizing modular echo state network for time series prediction. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2021.108317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Mohammadi MR, Hadavimoghaddam F, Atashrouz S, Abedi A, Hemmati-Sarapardeh A, Mohaddespour A. Modeling hydrogen solubility in alcohols using machine learning models and equations of state. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Li Z, Tanaka G. Multi-reservoir echo state networks with sequence resampling for nonlinear time-series prediction. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.08.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wang Z, Yao X, Huang Z, Liu L. Deep Echo State Network With Multiple Adaptive Reservoirs for Time Series Prediction. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3062177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Functional deep echo state network improved by a bi-level optimization approach for multivariate time series classification. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Han M, Li W, Feng S, Qiu T, Chen CLP. Maximum Information Exploitation Using Broad Learning System for Large-Scale Chaotic Time-Series Prediction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2320-2329. [PMID: 32697722 DOI: 10.1109/tnnls.2020.3004253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How to make full use of the evolution information of chaotic systems for time-series prediction is a difficult issue in dynamical system modeling. In this article, we propose a maximum information exploitation broad learning system (MIE-BLS) for extreme information utilization of large-scale chaotic time-series modeling. An improved leaky integrator dynamical reservoir is introduced in order to capture the linear information of chaotic systems effectively. It can not only capture the information of the current state but also achieve the compromise with historical states in the dynamical system. Furthermore, the feature is mapped to the enhancement layer by nonlinear random mapping to exploit nonlinear information. The cascading mechanism promotes the information propagation and achieves feature reactivation in dynamical modeling. Discussions about maximum information exploration and the comparisons with ResNet, DenseNet, and HighwayNet are presented in this article. Simulation results on four large-scale data sets illustrate that MIE-BLS could achieve better performance of information exploration in large-scale dynamical system modeling.
Collapse
|
16
|
Wang X, Jin Y, Hao K. Synergies between synaptic and intrinsic plasticity in echo state networks. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Ma Q, Chen E, Lin Z, Yan J, Yu Z, Ng WWY. Convolutional Multitimescale Echo State Network. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:1613-1625. [PMID: 31217137 DOI: 10.1109/tcyb.2019.2919648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As efficient recurrent neural network (RNN) models, echo state networks (ESNs) have attracted widespread attention and been applied in many application domains in the last decade. Although they have achieved great success in modeling time series, a single ESN may have difficulty in capturing the multitimescale structures that naturally exist in temporal data. In this paper, we propose the convolutional multitimescale ESN (ConvMESN), which is a novel training-efficient model for capturing multitimescale structures and multiscale temporal dependencies of temporal data. In particular, a multitimescale memory encoder is constructed with a multireservoir structure, in which different reservoirs have recurrent connections with different skip lengths (or time spans). By collecting all past echo states in each reservoir, this multireservoir structure encodes the history of a time series as nonlinear multitimescale echo state representations (MESRs). Our visualization analysis verifies that the MESRs provide better discriminative features for time series. Finally, multiscale temporal dependencies of MESRs are learned by a convolutional layer. By leveraging the multitimescale reservoirs followed by a convolutional learner, the ConvMESN has not only efficient memory encoding ability for temporal data with multitimescale structures but also strong learning ability for complex temporal dependencies. Furthermore, the training-free reservoirs and the single convolutional layer provide high-computational efficiency for the ConvMESN to model complex temporal data. Extensive experiments on 18 multivariate time series (MTS) benchmark datasets and 3 skeleton-based action recognition datasets demonstrate that the ConvMESN captures multitimescale dynamics and outperforms existing methods.
Collapse
|
18
|
A stability criterion for discrete-time fractional-order echo state network and its application. Soft comput 2021. [DOI: 10.1007/s00500-020-05489-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
|
20
|
Wang X, Jin Y, Hao K. Evolving Local Plasticity Rules for Synergistic Learning in Echo State Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1363-1374. [PMID: 31247578 DOI: 10.1109/tnnls.2019.2919903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Existing synaptic plasticity rules for optimizing the connections between neurons within the reservoir of echo state networks (ESNs) remain to be global in that the same type of plasticity rule with the same parameters is applied to all neurons. However, this is biologically implausible and practically inflexible for learning the structures in the input signals, thereby limiting the learning performance of ESNs. In this paper, we propose to use local plasticity rules that allow different neurons to use different types of plasticity rules and different parameters, which are achieved by optimizing the parameters of the local plasticity rules using the evolution strategy (ES) with covariance matrix adaptation (CMA-ES). We show that evolving neural plasticity will result in a synergistic learning of different plasticity rules, which plays an important role in improving the learning performance. Meanwhile, we show that the local plasticity rules can effectively alleviate synaptic interferences in learning the structure in sensory inputs. The proposed local plasticity rules are compared with a number of the state-of-the-art ESN models and the canonical ESN using a global plasticity rule on a set of widely used prediction and classification benchmark problems to demonstrate its competitive learning performance.
Collapse
|
21
|
|
22
|
|
23
|
Xu M, Han M, Qiu T, Lin H. Hybrid Regularized Echo State Network for Multivariate Chaotic Time Series Prediction. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:2305-2315. [PMID: 29994040 DOI: 10.1109/tcyb.2018.2825253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multivariate chaotic time series prediction is a hot research topic, the goal of which is to predict the future of the time series based on past observations. Echo state networks (ESNs) have recently been widely used in time series prediction, but there may be an ill-posed problem for a large number of unknown output weights. To solve this problem, we propose a hybrid regularized ESN, which employs a sparse regression with the L1/2 regularization and the L2 regularization to compute the output weights. The L1/2 penalty shows many attractive properties, such as unbiasedness and sparsity. The L2 penalty presents appealing ability on shrinking the amplitude of the output weights. After the output weights are calculated, the input weights, internal weights, and output weights are fine-tuning by a Hessian-free optimization method-conjugate gradient backpropagation algorithm. The fine-tuning helps to bubble up the input information toward the output layer. Besides, the largest Lyapunov exponent is used to calculate the predictable horizon of a chaotic time series. Experimental results on benchmark and real-world datasets show that our proposed method is superior to other ESN-based models, as sparser, smaller-absolute-value, and more informative output weights are obtained. All of the predictions within the predictable horizon of the proposed model are accurate.
Collapse
|
24
|
A Hybrid Model Based on a Two-Layer Decomposition Approach and an Optimized Neural Network for Chaotic Time Series Prediction. Symmetry (Basel) 2019. [DOI: 10.3390/sym11050610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The prediction of chaotic time series has been a popular research field in recent years. Due to the strong non-stationary and high complexity of the chaotic time series, it is difficult to directly analyze and predict depending on a single model, so the hybrid prediction model has become a promising and favorable alternative. In this paper, we put forward a novel hybrid model based on a two-layer decomposition approach and an optimized back propagation neural network (BPNN). The two-layer decomposition approach is proposed to obtain comprehensive information of the chaotic time series, which is composed of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD). The VMD algorithm is used for further decomposition of the high frequency subsequences obtained by CEEMDAN, after which the prediction performance is significantly improved. We then use the BPNN optimized by a firefly algorithm (FA) for prediction. The experimental results indicate that the two-layer decomposition approach is superior to other competing approaches in terms of four evaluation indexes in one-step and multi-step ahead predictions. The proposed hybrid model has a good prospect in the prediction of chaotic time series.
Collapse
|
25
|
Chouikhi N, Ammar B, Hussain A, Alimi AM. Bi-level multi-objective evolution of a Multi-Layered Echo-State Network Autoencoder for data representations. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D, Hirose A. Recent advances in physical reservoir computing: A review. Neural Netw 2019; 115:100-123. [PMID: 30981085 DOI: 10.1016/j.neunet.2019.03.005] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Reservoir computing is a computational framework suited for temporal/sequential data processing. It is derived from several recurrent neural network models, including echo state networks and liquid state machines. A reservoir computing system consists of a reservoir for mapping inputs into a high-dimensional space and a readout for pattern analysis from the high-dimensional states in the reservoir. The reservoir is fixed and only the readout is trained with a simple method such as linear regression and classification. Thus, the major advantage of reservoir computing compared to other recurrent neural networks is fast learning, resulting in low training cost. Another advantage is that the reservoir without adaptive updating is amenable to hardware implementation using a variety of physical systems, substrates, and devices. In fact, such physical reservoir computing has attracted increasing attention in diverse fields of research. The purpose of this review is to provide an overview of recent advances in physical reservoir computing by classifying them according to the type of the reservoir. We discuss the current issues and perspectives related to physical reservoir computing, in order to further expand its practical applications and develop next-generation machine learning systems.
Collapse
Affiliation(s)
- Gouhei Tanaka
- Institute for Innovation in International Engineering Education, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | | | | | - Ryosho Nakane
- Institute for Innovation in International Engineering Education, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | | | | | | | | | - Akira Hirose
- Institute for Innovation in International Engineering Education, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Design of deep echo state networks. Neural Netw 2018; 108:33-47. [PMID: 30138751 DOI: 10.1016/j.neunet.2018.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022]
Abstract
In this paper, we provide a novel approach to the architectural design of deep Recurrent Neural Networks using signal frequency analysis. In particular, focusing on the Reservoir Computing framework and inspired by the principles related to the inherent effect of layering, we address a fundamental open issue in deep learning, namely the question of how to establish the number of layers in recurrent architectures in the form of deep echo state networks (DeepESNs). The proposed method is first analyzed and refined on a controlled scenario and then it is experimentally assessed on challenging real-world tasks. The achieved results also show the ability of properly designed DeepESNs to outperform RC approaches on a speech recognition task, and to compete with the state-of-the-art in time-series prediction on polyphonic music tasks.
Collapse
|
28
|
Adaptive lasso echo state network based on modified Bayesian information criterion for nonlinear system modeling. Neural Comput Appl 2018. [DOI: 10.1007/s00521-018-3420-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
|
30
|
|
31
|
|