1
|
Qiu Q, Chen Y, Su H. Finite-time H ∞ output synchronization for DCRDNNs with multiple delayed and adaptive output couplings. Neural Netw 2025; 184:107104. [PMID: 39787680 DOI: 10.1016/j.neunet.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/03/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
This work concentrates on solving the finite-time H∞ output synchronization (FTHOS) issue of directed coupled reaction-diffusion neural networks (DCRDNNs) with multiple delayed and adaptive output couplings in the presence of external disturbances. Based on the output information, an adaptive law to adjust output coupling weights and a controller are respectively developed to ensure that the DCRDNNs achieve FTHOS. Then, in the special case of no external disturbances, a corollary on the finite-time output synchronization (FTOS) of the DCRDNNs with multiple delayed and adaptive output couplings is provided. In addition, a novel adaptive scheme to update output coupling weights is devised to ensure H∞ output synchronization (HOS) in the DCRDNNs with multiple delayed output couplings. Finally, the relevant simulation graphs are provided to certify the validity of several synchronization criteria.
Collapse
Affiliation(s)
- Qian Qiu
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China.
| | - Yin Chen
- Department of Electronic and Electrical Engineering, University of Strathclyde, G1 1XW Glasgow, UK.
| | - Housheng Su
- School of Artificial Intelligence and Automation, Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Peng H, Zeng B, Yang L, Xu Y, Lu R. Distributed Extended State Estimation for Complex Networks With Nonlinear Uncertainty. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:5952-5960. [PMID: 34914598 DOI: 10.1109/tnnls.2021.3131661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article studies the distributed state estimation issue for complex networks with nonlinear uncertainty. The extended state approach is used to deal with the nonlinear uncertainty. The distributed state predictor is designed based on the extended state system model, and the distributed state estimator is designed by using the measurement of the corresponding node. The prediction error and the estimation error are derived. The prediction error covariance (PEC) is obtained in terms of the recursive Riccati equation, and the upper bound of the PEC is minimized by designing an optimal estimator gain. With the vectorization approach, a sufficient condition concerning stability of the upper bound is developed. Finally, a numerical example is presented to illustrate the effectiveness of the designed extended state estimator.
Collapse
|
3
|
Wen T, Cao J, Cheong KH. Gravity-Based Community Vulnerability Evaluation Model in Social Networks: GBCVE. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:2467-2479. [PMID: 34793311 DOI: 10.1109/tcyb.2021.3123081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The usage of social media around the world is ever-increasing. Social media statistics from 2019 show that there are 3.5 billion social media users worldwide. However, the existence of community structure renders the network vulnerable to attacks and large-scale losses. How does one comprehensively consider the multiple information sources and effectively evaluate the vulnerability of the community? To answer this question, we design a gravity-based community vulnerability evaluation (GBCVE) model for multiple information considerations. Specifically, we construct the community network by the Jensen-Shannon divergence and log-sigmoid transition function to show the relationship between communities. The number of edges inside community and outside of each community, as well as the gravity index are the three important factors used in this model for evaluating the community vulnerability. These three factors correspond to the interior information of the community, small-scale interaction relationship, and large-scale interaction relationship, respectively. A fuzzy ranking algorithm is then used to describe the vulnerability relationship between different communities, and the sensitivity of different weighting parameters is then analyzed by Sobol' indices. We validate and demonstrate the applicability of our proposed community vulnerability evaluation method via three real-world complex network test examples. Our proposed model can be applied to find vulnerable components in a network to mitigate the influence of public opinions or natural disasters in real time. The community vulnerability evaluation results from our proposed model are expected to shed light on other properties of communities within social networks and have real-world applications across network science.
Collapse
|
4
|
Cao Y, Zhao L, Zhong Q, Wen S, Shi K, Xiao J, Huang T. Adaptive fixed-time output synchronization for complex dynamical networks with multi-weights. Neural Netw 2023; 163:28-39. [PMID: 37023543 DOI: 10.1016/j.neunet.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
This paper addresses fixed-time output synchronization problems for two types of complex dynamical networks with multi-weights (CDNMWs) by using two types of adaptive control methods. Firstly, complex dynamical networks with multiple state and output couplings are respectively presented. Secondly, several fixed-time output synchronization criteria for these two networks are formulated based on Lyapunov functional and inequality techniques. Thirdly, by employing two types of adaptive control methods, fixed-time output synchronization issues of these two networks are dealt with. At last, the analytical results are verified by two numerical simulations.
Collapse
|
5
|
Qin X, Jiang H, Qiu J, Hu C, Ren Y. Strictly intermittent quantized control for fixed/predefined-time cluster lag synchronization of stochastic multi-weighted complex networks. Neural Netw 2023; 158:258-271. [PMID: 36481458 DOI: 10.1016/j.neunet.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/27/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
This article addresses the fixed-time (F-T) and predefined-time (P-T) cluster lag synchronization of stochastic multi-weighted complex networks (SMWCNs) via strictly intermittent quantized control (SIQC). Firstly, by exploiting mathematical induction and reduction to absurdity, a novel F-T stability lemma is proved and an accurate estimation of settling time (ST) is obtained. Subsequently, by virtue of the proposed F-T stability, some simple conditions that ensure the F-T cluster lag synchronization of SMWCNs are derived by developing a SIQC strategy. Furthermore, the P-T cluster lag synchronization is also explored based on a SIQC design, where the ST can be predefined by an adjustable constant of the controller. Note that the designed controllers here are simpler and more economical than the traditional design whose the linear part is still activated during the rest interval. Finally, two numerical examples are provided to verify the effectiveness of the theoretical results.
Collapse
Affiliation(s)
- Xuejiao Qin
- College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, PR China
| | - Haijun Jiang
- College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, PR China.
| | - Jianlong Qiu
- School of Automation and Electrical Engineering, Linyi University, Linyi 276005, PR China
| | - Cheng Hu
- College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, PR China
| | - Yue Ren
- College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, PR China
| |
Collapse
|
6
|
Wang L, Bian Y, Guo Z, Hu M. Lag H∞ synchronization in coupled reaction–diffusion neural networks with multiple state or derivative couplings. Neural Netw 2022; 156:179-192. [DOI: 10.1016/j.neunet.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
|
7
|
Yao X, Liu Y, Zhang Z, Wan W. Synchronization Rather Than Finite-Time Synchronization Results of Fractional-Order Multi-Weighted Complex Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:7052-7063. [PMID: 34125684 DOI: 10.1109/tnnls.2021.3083886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article investigates the synchronization of fractional-order multi-weighted complex networks (FMWCNs) with order α ∈ (0,1) . A useful fractional-order inequality t0C Dtα V(x(t)) ≤ -μV(x(t)) is extended to a more general form t0C Dtα V(x(t)) ≤ -μVγ(x(t)),γ ∈ (0,1] , which plays a pivotal role in studies of synchronization for FMWCNs. However, the inequality t0C Dtα V(x(t)) ≤ -μVγ(x(t)),γ ∈ (0,1) has been applied to achieve the finite-time synchronization for fractional-order systems in the absence of rigorous mathematical proofs. Based on reduction to absurdity in this article, we prove that it cannot be used to obtain finite-time synchronization results under bounded nonzero initial value conditions. Moreover, by using feedback control strategy and Lyapunov direct approach, some sufficient conditions are presented in the forms of linear matrix inequalities (LMIs) to ensure the synchronization for FMWCNs in the sense of a widely accepted definition of synchronization. Meanwhile, these proposed sufficient results cannot guarantee the finite-time synchronization of FMWCNs. Finally, two chaotic systems are given to verify the feasibility of the theoretical results.
Collapse
|
8
|
Li S, Zhao J, Ding X. Stability of stochastic delayed multi-links complex network with semi-Markov switched topology: A time-varying hybrid aperiodically intermittent control strategy. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
New Criteria for Synchronization of Multilayer Neural Networks via Aperiodically Intermittent Control. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8157794. [PMID: 36203729 PMCID: PMC9532079 DOI: 10.1155/2022/8157794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022]
Abstract
In this paper, the globally asymptotic synchronization of multi-layer neural networks is studied via aperiodically intermittent control. Due to the property of intermittent control, it is very hard to deal with the effect of time-varying delays and ascertain the control and rest widths for intermittent control. A new lemma with generalized Halanay-type inequalities are proposed first. Then, by constructing a new Lyapunov–Krasovskii functional and utilizing linear programming methods, several useful criteria are derived to ensure the multilayer neural networks achieve asymptotic synchronization. Moreover, an aperiodically intermittent control is designed, which has no direct relationship with control widths and rest widths and extends existing aperiodically intermittent control techniques, the control gains are designed by solving the linear programming. Finally, a numerical example is provided to confirm the effectiveness of the proposed theoretical results.
Collapse
|
10
|
Output synchronization analysis of coupled fractional-order neural networks with fixed and adaptive couplings. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Alternate Event-Triggered Intermittent Control for Exponential Synchronization of Multi-Weighted Complex Networks. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Cao Y, Zhao L, Wen S, Huang T. Lag H∞ synchronization of coupled neural networks with multiple state couplings and multiple delayed state couplings. Neural Netw 2022; 151:143-155. [DOI: 10.1016/j.neunet.2022.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
13
|
Yuan W, Shi S, Ma Y. Global synchronization of multi-weighted complex dynamical networks with multiple time-varying delays via PI/PD control. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06663-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wang JL, Wang Q, Wu HN, Huang T. Finite-Time Output Synchronization and H ∞ Output Synchronization of Coupled Neural Networks With Multiple Output Couplings. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:6041-6053. [PMID: 32011276 DOI: 10.1109/tcyb.2020.2964592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates the finite-time output synchronization and H∞ output synchronization problems for coupled neural networks with multiple output couplings (CNNMOC), respectively. By choosing appropriate state feedback controllers, several finite-time output synchronization and H∞ output synchronization criteria are proposed for the CNNMOC. Moreover, a coupling-weight adjustment scheme is also developed to guarantee the finite-time output synchronization and H∞ output synchronization of CNNMOC. Finally, two numerical examples are given to verify the effectiveness of the presented criteria.
Collapse
|
15
|
Hu Z, Deng F, Wu ZG. Synchronization of Stochastic Complex Dynamical Networks Subject to Consecutive Packet Dropouts. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:3779-3788. [PMID: 30990453 DOI: 10.1109/tcyb.2019.2907279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper studies the modeling and synchronization problems for stochastic complex dynamical networks subject to consecutive packet dropouts. Different from some existing research results, both probability characteristic and upper bound of consecutive packet dropouts are involved in the proposed approach of controller design. First, an error dynamical network with stochastic and bounded delay is established by step-delay method, where the randomness of the bounded delay can be verified later by the probability theory method. A new modeling method is introduced to reflect the probability characteristic of consecutive packet dropouts. Based on the proposed model, some sufficient conditions are proposed under which the error dynamical network is globally exponentially synchronized in the mean square sense. Subsequently, a probability-distribution-dependent controller design procedure is then proposed. Finally, two numerical examples with simulations are provided to validate the analytical results and demonstrate the less conservatism of the proposed model method.
Collapse
|
16
|
Huang Y, Lin S, Liu X. $$\mathcal {H}_\infty $$ Synchronization and Robust $$\mathcal {H}_\infty $$ Synchronization of Coupled Neural Networks with Non-identical Nodes. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10554-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Yang Y, Tu Z, Wang L, Cao J, Shi L, Qian W. H ∞ synchronization of delayed neural networks via event-triggered dynamic output control. Neural Netw 2021; 142:231-237. [PMID: 34034070 DOI: 10.1016/j.neunet.2021.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
This paper investigates H∞ exponential synchronization (ES) of neural networks (NNs) with delay by designing an event-triggered dynamic output feedback controller (ETDOFC). The ETDOFC is flexible in practice since it is applicable to both full order and reduced order dynamic output techniques. Moreover, the event generator reduces the computational burden for the zero-order-hold (ZOH) operator and does not induce sampling delay as many existing event generators do. To obtain less conservative results, the delay-partitioning method is utilized in the Lyapunov-Krasovskii functional (LKF). Synchronization criteria formulated by linear matrix inequalities (LMIs) are established. A simple algorithm is provided to design the control gains of the ETDOFC, which overcomes the difficulty induced by different dimensions of the system parameters. One numerical example is provided to demonstrate the merits of the theoretical analysis.
Collapse
Affiliation(s)
- Yachun Yang
- School of Mathematic and Statistics, Chongqing Three Gorges University, Wanzhou 404100, Chongqing, China
| | - Zhengwen Tu
- School of Mathematic and Statistics, Chongqing Three Gorges University, Wanzhou 404100, Chongqing, China.
| | - Liangwei Wang
- School of Mathematic and Statistics, Chongqing Three Gorges University, Wanzhou 404100, Chongqing, China
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing 210996, Jiangsu, China
| | - Lei Shi
- School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550004, China
| | - Wenhua Qian
- Computer Science and Engineering Department, Yunnan University, Kunming 650091, China
| |
Collapse
|
18
|
Wang Q, Wang JL. Finite-Time Output Synchronization of Undirected and Directed Coupled Neural Networks With Output Coupling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2117-2128. [PMID: 32554332 DOI: 10.1109/tnnls.2020.2997195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article focuses on the finite-time output synchronization problem for undirected and directed coupled neural networks with output coupling (CNNOC). Based on the designed state feedback controllers and some inequality techniques, we present several finite-time output synchronization criteria for these network models. In addition, two kinds of coupling-weight adjustment strategies are also developed to guarantee the finite-time output synchronization of undirected and directed CNNOC. Finally, two numerical examples are also provided to demonstrate the effectiveness of the theoretical results.
Collapse
|
19
|
Miao B, Li X, Lou J, Lu J. Pinning bipartite synchronization for coupled reaction-diffusion neural networks with antagonistic interactions and switching topologies. Neural Netw 2021; 141:174-183. [PMID: 33906083 DOI: 10.1016/j.neunet.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
In this paper, the bipartite synchronization issue for a class of coupled reaction-diffusion networks with antagonistic interactions and switching topologies is investigated. First of all, by virtue of Lyapunov functional method and pinning control technique, we obtain some sufficient conditions which can guarantee that networks with signed graph topologies realize bipartite synchronization under any initial conditions and arbitrary switching signals. Secondly, for the general switching signal and periodic switching signal, a pinning controller that can ensure bipartite synchronization of reaction-diffusions networks is designed based on the obtained conditions. Meanwhile, a directed relationship between coupling strength and control gains is presented. Thirdly, numerical simulation is provided to demonstrate the correctness and validity of the derived theoretical results for reaction-diffusion systems. We briefly conclude our findings and future work.
Collapse
Affiliation(s)
- Baojun Miao
- School of Science, Xuchang University, Xuchang 461000, China
| | - Xuechen Li
- School of Science, Xuchang University, Xuchang 461000, China
| | - Jungang Lou
- Zhejiang Province Key Laboratory of Smart Management & Application of Modern Agricultural Resources, Huzhou University, Huzhou 313000, China.
| | - Jianquan Lu
- School of Mathematics, Southeast University, Nanjing 210096, China; College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
20
|
Wang JL, Wang DY, Wu HN, Huang T. Output Synchronization of Complex Dynamical Networks With Multiple Output or Output Derivative Couplings. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:927-937. [PMID: 31094698 DOI: 10.1109/tcyb.2019.2912336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, the output synchronization problem for complex dynamical networks (CDNs) with multiple output or output derivative couplings is discussed in detail. Under the help of Lyapunov functional and inequality techniques, an output synchronization criterion is presented for CDNs with multiple output couplings (CDNMOCs). To ensure the output synchronization of CDNMOCs, an adaptive control scheme is also devised. Similarly, we also take into account the adaptive output synchronization and output synchronization of CDNs with multiple output derivative couplings. At last, several numerical examples are designed to testify the effectiveness of the proposed results.
Collapse
|
21
|
Fei K, Jiang M, Zhang Y. Global dissipativity and finite-time synchronization of mixed time-varying delayed memristor-based neural networks with discontinuous activations. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-191397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, the matters of dissipativity and finite time synchronization for memristor-based neural networks (MNNs) with mixed time-varying discontinuities are investigated. Firstly, under the framework of extending Filippov differential inclusion theory, several effective new criteria are derived. Then, the global dissipativity of Filippov solution to neural networks is proved by using generalized Halanay inequality and matrix measure method. Secondly, some novel sufficient conditions are introduced to guarantee the finite-time synchronization of the drive-response MNNs based on a simple Lyapunov function and two different feedback controllers. Finally, several numerical examples are given to verify the validity of the theoretical results.
Collapse
Affiliation(s)
- Kaifang Fei
- Institute of Nonlinear Complex Systems, China Three Gorges University, YiChang, Hubei, China
- Three Gorges Mathematical Research Center, China Three Gorges University, China
| | - Minghui Jiang
- Institute of Nonlinear Complex Systems, China Three Gorges University, YiChang, Hubei, China
- Three Gorges Mathematical Research Center, China Three Gorges University, China
| | - Yadan Zhang
- Institute of Nonlinear Complex Systems, China Three Gorges University, YiChang, Hubei, China
- Three Gorges Mathematical Research Center, China Three Gorges University, China
| |
Collapse
|
22
|
Wang L, He H, Zeng Z, Hu C. Global Stabilization of Fuzzy Memristor-Based Reaction-Diffusion Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4658-4669. [PMID: 31725407 DOI: 10.1109/tcyb.2019.2949468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates the global stabilization problem of Takagi-Sugeno fuzzy memristor-based neural networks with reaction-diffusion terms and distributed time-varying delays. By using the Green formula and proposing fuzzy feedback controllers, several algebraic criteria dependent on the diffusion coefficients are established to guarantee the global exponential stability of the addressed networks. Moreover, a simpler stability criterion is obtained by designing an adaptive fuzzy controller. The results derived in this article are generalized and include some existing ones as special cases. Finally, the validity of the theoretical results is verified by two examples.
Collapse
|
23
|
Liu X, Tay WP, Liu ZW, Xiao G. Quasi-Synchronization of Heterogeneous Networks With a Generalized Markovian Topology and Event-Triggered Communication. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4200-4213. [PMID: 30703056 DOI: 10.1109/tcyb.2019.2891536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We consider the quasi-synchronization problem of a continuous time generalized Markovian switching heterogeneous network with time-varying connectivity, using pinned nodes that are event-triggered to reduce the frequency of controller updates and internode communications. We propose a pinning strategy algorithm to determine how many and which nodes should be pinned in the network. Based on the assumption that a network has limited control efficiency, we derive a criterion for stability, which relates the pinning feedback gains, the coupling strength, and the inner coupling matrix. By utilizing the stochastic Lyapunov stability analysis, we obtain sufficient conditions for exponential quasi-synchronization under our stochastic event-triggering mechanism, and a bound for the quasi-synchronization error. Numerical simulations are conducted to verify the effectiveness of the proposed control strategy.
Collapse
|
24
|
Zhou C, Wang C, Sun Y, Yao W. Weighted sum synchronization of memristive coupled neural networks. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.04.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Fixed-time stochastic outer synchronization in double-layered multi-weighted coupling networks with adaptive chattering-free control. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Wu Y, Zhu J, Li W. Intermittent Discrete Observation Control for Synchronization of Stochastic Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:2414-2424. [PMID: 31398140 DOI: 10.1109/tcyb.2019.2930579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, to investigate the exponential synchronization of stochastic neural networks, a new periodically intermittent discrete observation control (PIDOC) is first proposed. Different from the existing periodically intermittent control, our control in control time is feedback control based on discrete-time state observations (FCDSOs) instead of a continuous-time one. By employing the Lyapunov method, graph theory, and theory of differential inclusions, the exponential synchronization of stochastic neural networks with a discontinuous right-hand side is realized by PIDOC and some sufficient conditions are presented. Especially, when control width tends to control period, PIDOC will be reduced to a general FCDSO and we give some detailed discussions. Then, we provide some corollaries about synchronization in mean square, asymptotical synchronization in mean square, and exponential synchronization of stochastic neural networks under FCDSO. Finally, some numerical simulations are provided to demonstrate our analytical results.
Collapse
|
27
|
Lu J, Huang Y, Ren S. General decay synchronization and H ∞ synchronization of spatial diffusion coupled delayed reaction-diffusion neural networks. ISA TRANSACTIONS 2020; 101:234-245. [PMID: 32081404 DOI: 10.1016/j.isatra.2020.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
This paper deals with the general decay synchronization (GDS) and general decay H∞ synchronization (GDHS) problems for spatial diffusion coupled delayed reaction-diffusion neural networks (SDCDRDNNs) without and with uncertain parameters respectively. First, based on the ψ-type stability and ψ-type function, the concept of GDS is generalized to include general robust decay synchronization (GRDS) and GDHS. Then, by exploiting a nonlinear controller and different types of inequality techniques, some verifiably sufficient conditions ensuring the GDS and GDHS of SDCDRDNNs (without and with uncertain parameters) are derived. Finally, two simulative examples are provided to demonstrate the validity of the synchronization results obtained.
Collapse
Affiliation(s)
- Jianmou Lu
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Computer Science and Technology, Tiangong University, Tianjin 300387, China
| | - Yanli Huang
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Computer Science and Technology, Tiangong University, Tianjin 300387, China.
| | - Shunyan Ren
- School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
28
|
Zhao LH, Wang JL. Lag H∞ synchronization and lag synchronization for multiple derivative coupled complex networks. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Wang JL, Qin Z, Wu HN, Huang T. Finite-Time Synchronization and H ∞ Synchronization of Multiweighted Complex Networks With Adaptive State Couplings. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:600-612. [PMID: 30295639 DOI: 10.1109/tcyb.2018.2870133] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, two kinds of multiweighted and adaptive state coupled complex networks (CNs) with or without coupling delays are presented. First, we develop the appropriate state feedback controller and adaptive law for the sake of guaranteeing that the proposed network models without coupling delays can be finite-timely synchronized and H∞ synchronized. Furthermore, for the multiweighted CNs with coupling delays and adaptive state couplings, some finite-time synchronization and H∞ synchronization criteria are presented by choosing the appropriate adaptive law and controllers. Eventually, we give two numerical simulations to verify the validity of the theoretical results.
Collapse
|
30
|
Lu B, Jiang H, Hu C, Abdurahman A. Spacial sampled-data control for H ∞ output synchronization of directed coupled reaction-diffusion neural networks with mixed delays. Neural Netw 2020; 123:429-440. [PMID: 31954263 DOI: 10.1016/j.neunet.2019.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022]
Abstract
This work investigates the H∞ output synchronization (HOS) of the directed coupled reaction-diffusion (R-D) neural networks (NNs) with mixed delays. Firstly, a model of the directed state coupled R-D NNs is introduced, which not only contains some discrete and distributed time delays, but also obeys a mixed Dirichlet-Neumann boundary condition. Secondly, a spacial sampled-data controller is proposed to achieve the HOS of the considered networks. This type of controller can reduce the update rate in the process of control by measuring the state of networks at some fixed sampling points in the space region. Moreover, some criteria for the HOS are established by designing an appropriate Lyapunov functional, and some quantitative relations between diffusion coefficients, mixed delays, coupling strength and control parameters are given accurately by these criteria. Thirdly, the case of directed spatial diffusion coupled networks is also studied and, the following finding is obtained: the spatial diffusion coupling can suppress the HOS while the state coupling can promote it. Finally, one example is simulated as the verification of the theoretical results.
Collapse
Affiliation(s)
- Binglong Lu
- College of Mathematics and System Science, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Haijun Jiang
- College of Mathematics and System Science, Xinjiang University, Urumqi 830046, People's Republic of China.
| | - Cheng Hu
- College of Mathematics and System Science, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Abdujelil Abdurahman
- College of Mathematics and System Science, Xinjiang University, Urumqi 830046, People's Republic of China
| |
Collapse
|
31
|
Finite-time passivity of multiple weighted coupled uncertain neural networks with directed and undirected topologies. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Li X, Zhang W, Fang JA, Li H. Finite-time synchronization of memristive neural networks with discontinuous activation functions and mixed time-varying delays. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.02.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Zhao Z, Lv F, Zhang J, Sun L. Synchronization control design for uncertain coronary artery time-delay system with input saturation. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A synchronization control scheme is proposed for uncertain coronary artery system (CAS) with input saturation. In order to deal with the input saturation, linear matrix inequalities (LMIS), adequate conditions are obtained based on the local sector condition. Furthermore, by constructing Lyapunov–Krasovskii functional (LKF), we design a state feedback controller to achieve synchronization for chaos system with input saturation. Moreover, the improved Jensen inequality, convex analysis, delay-partitioning approach and Moon et al.’s inequality are utilized to get the less conservative. Finally, the simulation result is given to explain the effectiveness of the proposed synchronization control scheme.
Collapse
Affiliation(s)
- Zhanshan Zhao
- School of Computer Science and Technology, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - Fei Lv
- School of Computer Science and Technology, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - Jing Zhang
- School of Textiles, Tianjin Polytechnic University, Tianjin, 300387, P. R. China
| | - Liankun Sun
- School of Computer Science and Technology, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| |
Collapse
|