1
|
Yu Q, Jia L, Shao Y, He J, Wang J, Yuan X, Huan M, Yang Y. A local adaptive fuzzy spectral clustering method for robust and practical clustering. Sci Rep 2025; 15:7833. [PMID: 40050392 PMCID: PMC11885603 DOI: 10.1038/s41598-025-91812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Traditional spectral clustering algorithms are sensitive to the similarity matrix, which impacts their performance. To address this, a local adaptive fuzzy spectral clustering (FSC) method is introduced, incorporating a fuzzy index to reduce this sensitivity. FSC also simplifies the traditional process through a local adaptive framework, optimizing the similarity matrix's use. Experimental results show that FSC outperforms traditional methods, particularly on high-dimensional datasets with complex structures.
Collapse
Affiliation(s)
- Qiangguo Yu
- Huzhou College, Huzhou, 313000, Zhejiang, China
- Huzhou Key Laboratory for Urban Multidimensional Perception and Intelligent Computing, Huzhou College, Huzhou, China
| | | | - Yuxuan Shao
- Zhejiang University of Technology, Hangzhou, 310000, Zhejiang, China
| | - Jianhao He
- Huzhou University, Huzhou, 313000, Zhejiang, China
| | | | - Xinhui Yuan
- Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Miao Huan
- Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Yi Yang
- Huzhou University, Huzhou, 313000, Zhejiang, China
| |
Collapse
|
2
|
Yang D, Shi H, Zeng B, Chen X. 2D/3D registration based on biplanar X-ray and CT images for surgical navigation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108444. [PMID: 39405996 DOI: 10.1016/j.cmpb.2024.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Image-based 2D/3D registration is a crucial technology for fluoroscopy-guided surgical interventions. However, traditional registration methods relying on a single X-ray image into surgical navigation systems. This study proposes a novel 2D/3D registration approach utilizing biplanar X-ray images combined with computed tomography (CT) to significantly reduce registration and navigation errors. The method is successfully implemented in a surgical navigation system, enhancing its precision and reliability. METHODS First, we simultaneously register the frontal and lateral X-ray images with the CT image, enabling mutual complementation and more precise localization. Additionally, we introduce a novel similarity measure for image comparison, providing a more robust cost function for the optimization algorithm. Furthermore, a multi-resolution strategy is employed to enhance registration efficiency. Lastly, we propose a more accurate coordinate transformation method, based on projection and 3D reconstruction, to improve the precision of surgical navigation systems. RESULTS We conducted registration and navigation experiments using pelvic, spinal, and femur phantoms. The navigation results demonstrated that the feature registration errors (FREs) in the three experiments were 0.505±0.063 mm, 0.515±0.055 mm, and 0.577±0.056 mm, respectively. Compared to the point-to-point (PTP) registration method based on anatomical landmarks, our method reduced registration errors by 31.3%, 23.9%, and 26.3%, respectively. CONCLUSION The results demonstrate that our method significantly reduces registration and navigation errors, highlighting its potential for application across various anatomical sites. Our code is available at: https://github.com/SJTUdemon/2D-3D-Registration.
Collapse
Affiliation(s)
- Demin Yang
- the Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haochen Shi
- the Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bolun Zeng
- the Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojun Chen
- the Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Du J, Guan K, Liu P, Li Y, Wang T. Boundary-Sensitive Loss Function With Location Constraint for Hard Region Segmentation. IEEE J Biomed Health Inform 2023; 27:992-1003. [PMID: 36378793 DOI: 10.1109/jbhi.2022.3222390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In computer-aided diagnosis and treatment planning, accurate segmentation of medical images plays an essential role, especially for some hard regions including boundaries, small objects and background interference. However, existing segmentation loss functions including distribution-, region- and boundary-based losses cannot achieve satisfactory performances on these hard regions. In this paper, a boundary-sensitive loss function with location constraint is proposed for hard region segmentation in medical images, which provides three advantages: i) our Boundary-Sensitive loss (BS-loss) can automatically pay more attention to the hard-to-segment boundaries (e.g., thin structures and blurred boundaries), thus obtaining finer object boundaries; ii) BS-loss also can adjust its attention to small objects during training to segment them more accurately; and iii) our location constraint can alleviate the negative impact of the background interference, through the distribution matching of pixels between prediction and Ground Truth (GT) along each axis. By resorting to the proposed BS-loss and location constraint, the hard regions in both foreground and background are considered. Experimental results on three public datasets demonstrate the superiority of our method. Specifically, compared to the second-best method tested in this study, our method improves performance on hard regions in terms of Dice similarity coefficient (DSC) and 95% Hausdorff distance (95%HD) of up to 4.17% and 73% respectively. In addition, it also achieves the best overall segmentation performance. Hence, we can conclude that our method can accurately segment these hard regions and improve the overall segmentation performance in medical images.
Collapse
|
4
|
Kumar P, Agrawal R, Kumar D. Fast and robust spatial fuzzy bounded k-plane clustering method for human brain MRI image segmentation. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Das PK, Meher S, Panda R, Abraham A. An Efficient Blood-Cell Segmentation for the Detection of Hematological Disorders. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:10615-10626. [PMID: 33735090 DOI: 10.1109/tcyb.2021.3062152] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The automatic segmentation of blood cells for detecting hematological disorders is a crucial job. It has a vital role in diagnosis, treatment planning, and output evaluation. The existing methods suffer from the issues like noise, improper seed-point detection, and oversegmentation problems, which are solved here using a Laplacian-of-Gaussian (LoG)-based modified highboosting operation, bounded opening followed by fast radial symmetry (BOFRS)-based seed-point detection, and hybrid ellipse fitting (EF), respectively. This article proposes a novel hybrid EF-based blood-cell segmentation approach, which may be used for detecting various hematological disorders. Our prime contributions are: 1) more accurate seed-point detection based on BO-FRS; 2) a novel least-squares (LS)-based geometric EF approach; and 3) an improved segmentation performance by employing a hybridized version of geometric and algebraic EF techniques retaining the benefits of both approaches. It is a computationally efficient approach since it hybridizes noniterative-geometric and algebraic methods. Moreover, we propose to estimate the minor and major axes based on the residue and residue offset factors. The residue offset parameter, proposed here, yields more accurate segmentation with proper EF. Our method is compared with the state-of-the-art methods. It outperforms the existing EF techniques in terms of dice similarity, Jaccard score, precision, and F1 score. It may be useful for other medical and cybernetics applications.
Collapse
|
6
|
Wang C, Pedrycz W, Li Z, Zhou M. Kullback-Leibler Divergence-Based Fuzzy C-Means Clustering Incorporating Morphological Reconstruction and Wavelet Frames for Image Segmentation. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:7612-7623. [PMID: 34623288 DOI: 10.1109/tcyb.2021.3099503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this article, we elaborate on a Kullback-Leibler (KL) divergence-based Fuzzy C -Means (FCM) algorithm by incorporating a tight wavelet frame transform and morphological reconstruction (MR). To make membership degrees of each image pixel closer to those of its neighbors, a KL divergence term on the partition matrix is introduced as a part of FCM, thus resulting in KL divergence-based FCM. To make the proposed FCM robust, a filtered term is augmented in its objective function, where MR is used for image filtering. Since tight wavelet frames provide redundant representations of images, the proposed FCM is performed in a feature space constructed by tight wavelet frame decomposition. To further improve its segmentation accuracy (SA), a segmented feature set is reconstructed by minimizing the inverse process of its objective function. Each reconstructed feature is reassigned to the closest prototype, thus modifying abnormal features produced in the reconstruction process. Moreover, a segmented image is reconstructed by using tight wavelet frame reconstruction. Finally, supporting experiments coping with synthetic, medical, and real-world images are reported. The experimental results exhibit that the proposed algorithm works well and comes with better segmentation performance than other peers. In a quantitative fashion, its average SA improvements over its peers are 4.06%, 3.94%, and 4.41%, respectively, when segmenting synthetic, medical, and real-world images. Moreover, the proposed algorithm requires less time than most of the FCM-related algorithms.
Collapse
|
7
|
Guo Q, Song H, Fan J, Ai D, Gao Y, Yu X, Yang J. Portal Vein and Hepatic Vein Segmentation in Multi-Phase MR Images Using Flow-Guided Change Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:2503-2517. [PMID: 35275817 DOI: 10.1109/tip.2022.3157136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Segmenting portal vein (PV) and hepatic vein (HV) from magnetic resonance imaging (MRI) scans is important for hepatic tumor surgery. Compared with single phase-based methods, multiple phases-based methods have better scalability in distinguishing HV and PV by exploiting multi-phase information. However, these methods just coarsely extract HV and PV from different phase images. In this paper, we propose a unified framework to automatically and robustly segment 3D HV and PV from multi-phase MR images, which considers both the change and appearance caused by the vascular flow event to improve segmentation performance. Firstly, inspired by change detection, flow-guided change detection (FGCD) is designed to detect the changed voxels related to hepatic venous flow by generating hepatic venous phase map and clustering the map. The FGCD uniformly deals with HV and PV clustering by the proposed shared clustering, thus making the appearance correlated with portal venous flow robustly delineate without increasing framework complexity. Then, to refine vascular segmentation results produced by both HV and PV clustering, interclass decision making (IDM) is proposed by combining the overlapping region discrimination and neighborhood direction consistency. Finally, our framework is evaluated on multi-phase clinical MR images of the public dataset (TCGA) and local hospital dataset. The quantitative and qualitative evaluations show that our framework outperforms the existing methods.
Collapse
|
8
|
Fuzzy k-plane clustering method with local spatial information for segmentation of human brain MRI image. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Wu C, Zhang J, Huang C, Guo X. Robust Dynamic Semi-supervised Picture Fuzzy Clustering with KL Divergence and Local Information. Cognit Comput 2022. [DOI: 10.1007/s12559-021-09988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Image Features of Resting-State Functional Magnetic Resonance Imaging in Evaluating Poor Emotion and Sleep Quality in Patients with Chronic Pain under Artificial Intelligence Algorithm. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5002754. [PMID: 35069042 PMCID: PMC8752300 DOI: 10.1155/2022/5002754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/27/2023]
Abstract
The balanced iterative reducing and clustering using hierarchies (BIRCH) method was adopted to optimize the results of the resting-state functional magnetic resonance imaging (RS-fMRI) to analyze the changes in the brain function of patients with chronic pain accompanied by poor emotion or abnormal sleep quality in this study, so as to provide data support for the prevention and treatment of clinical chronic pain with poor emotion or sleep quality. 159 patients with chronic pain who visited the hospital were selected as the research objects, and they were grouped according to the presence or absence of abnormalities in emotion and sleep. The patients without poor emotion and sleep quality were set as the control group (60 cases), and the patients with the above symptoms were defined in the observation group (90 cases). The brain function was detected by RS-fMRI technology based on the BIRCH algorithm. The results showed that the rand index (RI), adjustment of RI (ARI), and Fowlkes–Mallows index (FMI) results in the k-means, flow cytometry (FCM), and BIRCH algorithms were 0.82, 0.71, and 0.88, respectively. The scores of Hamilton Depression Scale (HAHD), Hamilton Anxiety Scale (HAMA), and Pittsburgh Sleep Quality Index (PSQI) were 7.26 ± 3.95, 7.94 ± 3.15, and 8.03 ± 4.67 in the observation group and 4.03 ± 1.95, 5.13 ± 2.35, and 4.43 ± 2.07 in the control group; the higher proportion of RS-fMRI was with abnormal brain signal connections. A score of 7 or more meant that the number of brain abnormalities was more than 90% and that of less than 7 was less than 40%, showing a statistically obvious difference in contrast (P < 0.05). Therefore, the BIRCH clustering algorithm showed reliable value in the optimization of RS-fMRI images, and RS-fMRI showed high application value in evaluating the emotion and sleep quality of patients with chronic pain.
Collapse
|
11
|
Intelligent Automatic Segmentation of Wrist Ganglion Cysts Using DBSCAN and Fuzzy C-Means. Diagnostics (Basel) 2021; 11:diagnostics11122329. [PMID: 34943564 PMCID: PMC8700243 DOI: 10.3390/diagnostics11122329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Ganglion cysts are common soft tissue masses of the hand and wrist, and small size cysts are often hypoechoic. Thus, identifying them from ultrasonography is not an easy problem. In this paper, we propose an automatic segmentation method using two artificial intelligence algorithms in sequence. A density based unsupervised learning algorithm called DBSCAN is performed as a front-end and its result determines the number of clusters used in the Fuzzy C-Means (FCM) clustering algorithm for quantification of ganglion cyst object. In an experiment using 120 images, the proposed method shows a higher extraction rate (89.2%) and lower false positive rate compared with FCM when the ground truth is set as the human expert's decision. Such human-like behavior is more apparent when the size of the ganglion cyst is small that the quality of ultrasonography is often not very high. With this fully automatic segmentation method, the operator subjectivity that is highly dependent on the experience of the ultrasound examiner can be mitigated with high reliability.
Collapse
|
12
|
Wu H, Chen X, Li P, Wen Z. Automatic Symmetry Detection From Brain MRI Based on a 2-Channel Convolutional Neural Network. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:4464-4475. [PMID: 31794419 DOI: 10.1109/tcyb.2019.2952937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Symmetry detection is a method to extract the ideal mid-sagittal plane (MSP) from brain magnetic resonance (MR) images, which can significantly improve the diagnostic accuracy of brain diseases. In this article, we propose an automatic symmetry detection method for brain MR images in 2-D slices based on a 2-channel convolutional neural network (CNN). Different from the existing detection methods that mainly rely on the local image features (gradient, edge, etc.) to determine the MSP, we use a CNN-based model to implement the brain symmetry detection, which does not require any local feature detections and feature matchings. By training to learn a wide variety of benchmarks in the brain images, we can further use a 2-channel CNN to evaluate the similarity between the pairs of brain patches, which are randomly extracted from the whole brain slice based on a Poisson sampling. Finally, a scoring and ranking scheme is used to identify the optimal symmetry axis for each input brain MR slice. Our method was evaluated in 2166 artificial synthesized brain images and 3064 collected in vivo MR images, which included both healthy and pathological cases. The experimental results display that our method achieves excellent performance for symmetry detection. Comparisons with the state-of-the-art methods also demonstrate the effectiveness and advantages for our approach in achieving higher accuracy than the previous competitors.
Collapse
|
13
|
Mishro PK, Agrawal S, Panda R, Abraham A. A Novel Type-2 Fuzzy C-Means Clustering for Brain MR Image Segmentation. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:3901-3912. [PMID: 32568716 DOI: 10.1109/tcyb.2020.2994235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fuzzy C -means (FCM) clustering procedure is an unsupervised form of grouping the homogenous pixels of an image in the feature space into clusters. A brain magnetic resonance (MR) image is affected by noise and intensity inhomogeneity (IIH) during the acquisition process. FCM has been used in MR brain tissue segmentation. However, it does not consider the neighboring pixels for computing the membership values, thereby misclassifying the noisy pixels. The inaccurate cluster centers obtained in FCM do not address the problem of IIH. A fixed value of the fuzzifier ( m ) used in FCM brings uncertainty in controlling the fuzziness of the extracted clusters. To resolve these issues, we suggest a novel type-2 adaptive weighted spatial FCM (AWSFCM) clustering algorithm for MR brain tissue segmentation. The idea of type-2 FCM applied to the problem on hand is new and is reported in this article. The application of the proposed technique to the problem of MR brain tissue segmentation replaces the fixed fuzzifier value with a fuzzy linguistic fuzzifier value ( M ). The introduction of the spatial information in the membership function reduces the misclassification of noisy pixels. Furthermore, the incorporation of adaptive weights into the cluster center update function improves the accuracy of the final cluster centers, thereby reducing the effect of IIH. The suggested algorithm is evaluated using T1-w, T2-w, and proton density (PD) brain MR image slices. The performance is justified in terms of qualitative and quantitative measures followed by statistical analysis. The outcomes demonstrate the superiority and robustness of the algorithm in comparison to the state-of-the-art methods. This article is useful for the cybernetics application.
Collapse
|
14
|
Huang Y, Xia M, Guo Y, Zhou G, Wang Y. Extraction of media adventitia and luminal intima borders by reconstructing intravascular ultrasound image sequences with vascular structural continuity. Med Phys 2021; 48:4350-4364. [PMID: 34101854 DOI: 10.1002/mp.15037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/06/2021] [Accepted: 05/29/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Most published methods directly achieve vessel membrane border detection on cross-sectional intravascular ultrasound (IVUS) images. The vascular structural continuity that exists in entire IVUS image sequences has been overlooked. However, this continuity can have a helpful role in the delineation of vessel membrane contours. To achieve the vessel membrane segmentation more effectively through employing this continuity, a strategy, referred to as multiangle reconstruction, segmentation, and recovery (RSR), is proposed in this paper. METHODS Four main steps are contained in the multiangle-RSR: first, a combination of sampling and interpolation is employed to reconstruct long-axis-model IVUS frames, in which continuity information becomes available. Second, a clustering algorithm is conducted on long-axis-model IVUS frames to roughly extract the media-adventitia (MA) and lumen-intima (LI) boundaries. Third, the segmentation results of cross-sectional IVUS frames are recovered based on the rough results of long-axis-model IVUS frames, and an optimization process that combines downsampling, fitting and smoothing is designed to reduce the interference of bifurcation and side vessels. RESULTS Multiangle-RSR is tested on a public dataset, and the Hausdorff distance (HD), Jaccard measure (JM), and percentage of area difference (PAD) are utilized as quantitative evaluation metrics. Mean HDs of 0.34 and 0.29 mm are obtained for MA border detection and LI border detection, respectively, which decrease by 43.3% and 9.4%, respectively, compared with their counterparts in previously published approaches. Furthermore, the mean JM is 0.87 for both MA border detection and LI border detection. The mean PADs of the MA contour extraction and the LI contour extraction are 0.10 and 0.11, respectively. CONCLUSION The results indicate that the proposed strategy effectively introduces vascular structural continuity by reconstructing long-axis-model IVUS frames and achieves more precise extraction of MA and LI borders.
Collapse
Affiliation(s)
- Yi Huang
- Department of Electrical Engineering, Fudan University, Shanghai, China
| | - Menghua Xia
- Department of Electrical Engineering, Fudan University, Shanghai, China
| | - Yi Guo
- Department of Electrical Engineering, Fudan University, Shanghai, China
| | - Guohui Zhou
- Department of Electrical Engineering, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- Department of Electrical Engineering, Fudan University, Shanghai, China
| |
Collapse
|
15
|
|
16
|
Muhammad K, Khan S, Ser JD, Albuquerque VHCD. Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:507-522. [PMID: 32603291 DOI: 10.1109/tnnls.2020.2995800] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brain tumor is one of the most dangerous cancers in people of all ages, and its grade recognition is a challenging problem for radiologists in health monitoring and automated diagnosis. Recently, numerous methods based on deep learning have been presented in the literature for brain tumor classification (BTC) in order to assist radiologists for a better diagnostic analysis. In this overview, we present an in-depth review of the surveys published so far and recent deep learning-based methods for BTC. Our survey covers the main steps of deep learning-based BTC methods, including preprocessing, features extraction, and classification, along with their achievements and limitations. We also investigate the state-of-the-art convolutional neural network models for BTC by performing extensive experiments using transfer learning with and without data augmentation. Furthermore, this overview describes available benchmark data sets used for the evaluation of BTC. Finally, this survey does not only look into the past literature on the topic but also steps on it to delve into the future of this area and enumerates some research directions that should be followed in the future, especially for personalized and smart healthcare.
Collapse
|
17
|
Wang C, Pedrycz W, Yang J, Zhou M, Li Z. Wavelet Frame-Based Fuzzy C-Means Clustering for Segmenting Images on Graphs. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:3938-3949. [PMID: 31295134 DOI: 10.1109/tcyb.2019.2921779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent years, image processing in a Euclidean domain has been well studied. Practical problems in computer vision and geometric modeling involve image data defined in irregular domains, which can be modeled by huge graphs. In this paper, a wavelet frame-based fuzzy C -means (FCM) algorithm for segmenting images on graphs is presented. To enhance its robustness, images on graphs are first filtered by using spatial information. Since a real image usually exhibits sparse approximation under a tight wavelet frame system, feature spaces of images on graphs can be obtained. Combining the original and filtered feature sets, this paper uses the FCM algorithm for segmentation of images on graphs contaminated by noise of different intensities. Finally, some supporting numerical experiments and comparison with other FCM-related algorithms are provided. Experimental results reported for synthetic and real images on graphs demonstrate that the proposed algorithm is effective and efficient, and has a better ability for segmentation of images on graphs than other improved FCM algorithms existing in the literature. The approach can effectively remove noise and retain feature details of images on graphs. It offers a new avenue for segmenting images in irregular domains.
Collapse
|