• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695764)   Today's Articles (386)
For: Zhang XM, Han QL, Ge X, Zhang BL. Passivity Analysis of Delayed Neural Networks Based on Lyapunov-Krasovskii Functionals With Delay-Dependent Matrices. IEEE Trans Cybern 2020;50:946-956. [PMID: 30346302 DOI: 10.1109/tcyb.2018.2874273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Number Cited by Other Article(s)
1
Kong GQ, Guo LD. Stability and passivity analysis of delayed neural networks via an improved matrix-valued polynomial inequality. Neural Netw 2024;180:106637. [PMID: 39180908 DOI: 10.1016/j.neunet.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
2
Zhang XM, Han QL, Ge X, Zhang BL. Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:1578-1587. [PMID: 34449397 DOI: 10.1109/tnnls.2021.3105591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
3
Long F, Zhang CK, He Y, Wang QG, Gao ZM, Wu M. Hierarchical Passivity Criterion for Delayed Neural Networks via A General Delay-Product-Type Lyapunov-Krasovskii Functional. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:421-432. [PMID: 34280110 DOI: 10.1109/tnnls.2021.3095183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
4
Qi W, Zong G, Su SF. Fault Detection for Semi-Markov Switching Systems in the Presence of Positivity Constraints. IEEE TRANSACTIONS ON CYBERNETICS 2022;52:13027-13037. [PMID: 34343105 DOI: 10.1109/tcyb.2021.3096948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
5
Liu F, Guo W, Zou R, Liu K. A general quadratic negative-determination lemma for stability analysis of delayed neural networks. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
6
Padmaja N, Balasubramaniam P. Results on passivity and design of passive controller for fuzzy neural networks with additive time-varying delays. Soft comput 2022. [DOI: 10.1007/s00500-022-07353-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
7
Chen Q, Liu X, Li X. Further improved global exponential stability result for neural networks with time-varying delay. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
8
Zheng W, Zhang Z, Sun F, Wen S. Robust stability analysis and feedback control for networked control systems with additive uncertainties and signal communication delay via matrices transformation information method. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
9
Wang HT, He Y, Zhang CK. Stability Analysis of Continuous-Time Switched Neural Networks With Time-Varying Delay Based on Admissible Edge-Dependent Average Dwell Time. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:5108-5117. [PMID: 33027009 DOI: 10.1109/tnnls.2020.3026912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
10
Zou D, Wang Z, Zhang L, Zou J, Li Q, Chen Y, Sheng W. Deep Field Relation Neural Network for click-through rate prediction. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
11
Liu CG, Wang JL. Passivity of fractional-order coupled neural networks with multiple state/derivative couplings. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
12
Stability analysis of delayed neural networks based on a relaxed delay-product-type Lyapunov functional. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
13
Lian HH, Xiao SP, Yan H, Yang F, Zeng HB. Dissipativity Analysis for Neural Networks With Time-Varying Delays via a Delay-Product-Type Lyapunov Functional Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:975-984. [PMID: 32275622 DOI: 10.1109/tnnls.2020.2979778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
14
Song Q, Chen S, Zhao Z, Liu Y, Alsaadi FE. Passive filter design for fractional-order quaternion-valued neural networks with neutral delays and external disturbance. Neural Netw 2021;137:18-30. [PMID: 33529939 DOI: 10.1016/j.neunet.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
15
Mahto SC, Ghosh S, Saket R, Nagar SK. Stability analysis of delayed neural network using new delay-product based functionals. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
16
Peng X, He Y, Long F, Wu M. Global exponential stability analysis of neural networks with a time-varying delay via some state-dependent zero equations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Lu C, Wu M, He Y. Stubborn State Estimation for Delayed Neural Networks Using Saturating Output Errors. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:1982-1994. [PMID: 31395563 DOI: 10.1109/tnnls.2019.2927610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA