1
|
Kong GQ, Guo LD. Stability and passivity analysis of delayed neural networks via an improved matrix-valued polynomial inequality. Neural Netw 2024; 180:106637. [PMID: 39180908 DOI: 10.1016/j.neunet.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The stability and passivity of delayed neural networks are addressed in this paper. A novel Lyapunov-Krasovskii functional (LKF) without multiple integrals is constructed. By using an improved matrix-valued polynomial inequality (MVPI), the previous constraint involving skew-symmetric matrices within the MVPI is removed. Then, the stability and passivity criteria for delayed neural networks that are less conservative than the existing ones are proposed. Finally, three examples are employed to demonstrate the meliority and feasibility of the obtained results.
Collapse
Affiliation(s)
- Guo-Qiang Kong
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Liang-Dong Guo
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China.
| |
Collapse
|
2
|
Zhang XM, Han QL, Ge X, Zhang BL. Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:1578-1587. [PMID: 34449397 DOI: 10.1109/tnnls.2021.3105591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article is concerned with the extended dissipativity of discrete-time neural networks (NNs) with time-varying delay. First, the necessary and sufficient condition on matrix-valued polynomial inequalities reported recently is extended to a general case, where the variable of the polynomial does not need to start from zero. Second, a novel Lyapunov functional with a delay-dependent Lyapunov matrix is constructed by taking into consideration more information on nonlinear activation functions. By employing the Lyapunov functional method, a novel delay and its variation-dependent criterion are obtained to investigate the effects of the time-varying delay and its variation rate on several performances, such as H∞ performance, passivity, and l2-l∞ performance, of a delayed discrete-time NN in a unified framework. Finally, a numerical example is given to show that the proposed criterion outperforms some existing ones.
Collapse
|
3
|
Long F, Zhang CK, He Y, Wang QG, Gao ZM, Wu M. Hierarchical Passivity Criterion for Delayed Neural Networks via A General Delay-Product-Type Lyapunov-Krasovskii Functional. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:421-432. [PMID: 34280110 DOI: 10.1109/tnnls.2021.3095183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article is concerned with passivity analysis of neural networks with a time-varying delay. Several techniques in the domain are improved to establish the new passivity criterion with less conservatism. First, a Lyapunov-Krasovskii functional (LKF) is constructed with two general delay-product-type terms which contain any chosen degree of polynomials in time-varying delay. Second, a general convexity lemma without conservatism is developed to address the positive-definiteness of the LKF and the negative-definiteness of its time-derivative. Then, with these improved results, a hierarchical passivity criterion of less conservatism is obtained for neural networks with a time-varying delay, whose size and conservatism vary with the maximal degree of the time-varying delay polynomial in the LKF. It is shown that the conservatism of the passivity criterion does not always reduce as the degree of the time-varying delay polynomial increases. Finally, a numerical example is given to illustrate the proposed criterion and benchmark against the existing results.
Collapse
|
4
|
Qi W, Zong G, Su SF. Fault Detection for Semi-Markov Switching Systems in the Presence of Positivity Constraints. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:13027-13037. [PMID: 34343105 DOI: 10.1109/tcyb.2021.3096948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fault detection issue is investigated for complex stochastic delayed systems in the presence of positivity constraints and semi-Markov switching parameters. By choosing a mode-dependent fault detection filter (FDF) as a residual generator, the corresponding fault detection is formulated as a positive [Formula: see text] filter problem. Attention is focused on the design of a mode-dependent FDF to minimize the error between the residual signal and the fault signal. The designed FDF features good sensitivity of the faults and robustness against the external disturbances. Subsequently, by means of the linear copositive Lyapunov functional (LCLF), stochastic stability is proposed to satisfy an expected [Formula: see text]-gain performance. Some solvability conditions for the desired mode-dependent FDF are established with the help of a linear programming approach. Finally, an application example of a data communication network model is provided to demonstrate the effectiveness of the theoretical findings.
Collapse
|
5
|
Liu F, Guo W, Zou R, Liu K. A general quadratic negative-determination lemma for stability analysis of delayed neural networks. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Padmaja N, Balasubramaniam P. Results on passivity and design of passive controller for fuzzy neural networks with additive time-varying delays. Soft comput 2022. [DOI: 10.1007/s00500-022-07353-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Chen Q, Liu X, Li X. Further improved global exponential stability result for neural networks with time-varying delay. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Zheng W, Zhang Z, Sun F, Wen S. Robust stability analysis and feedback control for networked control systems with additive uncertainties and signal communication delay via matrices transformation information method. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Wang HT, He Y, Zhang CK. Stability Analysis of Continuous-Time Switched Neural Networks With Time-Varying Delay Based on Admissible Edge-Dependent Average Dwell Time. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:5108-5117. [PMID: 33027009 DOI: 10.1109/tnnls.2020.3026912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article investigates the stability of the switched neural networks (SNNs) with a time-varying delay. To effectively guarantee the stability of the considered system with unstable subsystems and reduce conservatism of the stability criteria, admissible edge-dependent average dwell time (AED-ADT) is first utilized to restrict switching signals for the continuous-time SNNs, and multiple Lyapunov-Kravosikii functionals (LKFs) combining relaxed integral inequalities are employed to develop two novel less-conservative stability conditions. Finally, the numeral examples clearly indicate that the proposed criteria can reduce conservatism and ensure the stability of continuous-time SNNs.
Collapse
|
10
|
Zou D, Wang Z, Zhang L, Zou J, Li Q, Chen Y, Sheng W. Deep Field Relation Neural Network for click-through rate prediction. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Liu CG, Wang JL. Passivity of fractional-order coupled neural networks with multiple state/derivative couplings. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Stability analysis of delayed neural networks based on a relaxed delay-product-type Lyapunov functional. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Lian HH, Xiao SP, Yan H, Yang F, Zeng HB. Dissipativity Analysis for Neural Networks With Time-Varying Delays via a Delay-Product-Type Lyapunov Functional Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:975-984. [PMID: 32275622 DOI: 10.1109/tnnls.2020.2979778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article is concerned with the problem of dissipativity and stability analysis for a class of neural networks (NNs) with time-varying delays. First, a new augmented Lyapunov-Krasovskii functional (LKF), including some delay-product-type terms, is proposed, in which the information on time-varying delay and system states is taken into full consideration. Second, by employing a generalized free-matrix-based inequality and its simplified version to estimate the derivative of the proposed LKF, some improved delay-dependent conditions are derived to ensure that the considered NNs are strictly ( Q , S , R )- γ -dissipative. Furthermore, the obtained results are applied to passivity and stability analysis of delayed NNs. Finally, two numerical examples and a real-world problem in the quadruple tank process are carried out to illustrate the effectiveness of the proposed method.
Collapse
|
14
|
Song Q, Chen S, Zhao Z, Liu Y, Alsaadi FE. Passive filter design for fractional-order quaternion-valued neural networks with neutral delays and external disturbance. Neural Netw 2021; 137:18-30. [PMID: 33529939 DOI: 10.1016/j.neunet.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
The problem on passive filter design for fractional-order quaternion-valued neural networks (FOQVNNs) with neutral delays and external disturbance is considered in this paper. Without separating the FOQVNNs into two complex-valued neural networks (CVNNs) or the FOQVNNs into four real-valued neural networks (RVNNs), by constructing Lyapunov-Krasovskii functional and using inequality technique, the delay-independent and delay-dependent sufficient conditions presented as linear matrix inequality (LMI) to confirm the augmented filtering dynamic system to be stable and passive with an expected dissipation are derived. One numerical example with simulations is furnished to pledge the feasibility for the obtained theory results.
Collapse
Affiliation(s)
- Qiankun Song
- Department of Mathematics, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Sihan Chen
- School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhenjiang Zhao
- Department of Mathematics, Huzhou University, Huzhou 313000, China
| | - Yurong Liu
- Department of Mathematics, Yangzhou University, Yangzhou 225002, China; School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fuad E Alsaadi
- Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Mahto SC, Ghosh S, Saket R, Nagar SK. Stability analysis of delayed neural network using new delay-product based functionals. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Peng X, He Y, Long F, Wu M. Global exponential stability analysis of neural networks with a time-varying delay via some state-dependent zero equations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Lu C, Wu M, He Y. Stubborn State Estimation for Delayed Neural Networks Using Saturating Output Errors. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1982-1994. [PMID: 31395563 DOI: 10.1109/tnnls.2019.2927610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper is concerned with the stubborn state estimation of delayed neural networks that subject to a general class of disturbances in measurements, including outliers and impulsive disturbances as its special cases. This class of disturbances may be unbounded, irregular, and assorted; therefore, they can hardly be suppressed by existing identification-based estimation approaches. In this paper, a stubborn state estimator is constructed by intentionally devising a saturation scheme on the injection of output estimation error. The embedded saturation can effectively resist the influences from these measurement disturbances by saturating them. Moreover, the saturation threshold in the designed scheme is not constant but governed by a dynamic equation with parameters to be designed. Benefiting from this adaptiveness, the estimator obtains more freedom in dealing with various disturbances. By combining a novel Lyapunov functional, the generalized sector condition and two latest integral inequalities, a delay-dependent criterion is derived in a less conservative way to check whether the estimation error system with this dynamic saturation is globally stable. A sufficient condition with two tuning scalars is further provided to codesign the gain of the state estimator and the evolution law of the saturation threshold. Finally, two numerical examples are used to illustrate the stubbornness of this state estimator in the presence of measurement outliers or impulsive disturbances.
Collapse
|