1
|
Xu W, Li Z, Zhu S. Passivity and robust passivity of inertial memristive neural networks with time-varying delays via non-reduced order method. Neural Netw 2025; 184:107042. [PMID: 39700820 DOI: 10.1016/j.neunet.2024.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
This study examines the concepts of passivity and robust passivity in inertial memristive neural networks (IMNNs) that feature time-varying delays. By using non-smooth analysis and the passivity theorem, algebraic criteria for both passivity and robust passivity are derived by using the non-reduced order method. The proposed criteria, based on the non-reduced order method, effectively reduce the complexity of derivation and computation, thereby simplifying the verification process. Furthermore, asymptotic stability criteria for IMNNs are established in relation to the passivity conditions. In conclusion, two numerical examples are provided to confirm the theoretical results.
Collapse
Affiliation(s)
- Weizhe Xu
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China; Jiangsu Center for Applied Mathematics (CUMT), Xuzhou 221116, China.
| | - Zihao Li
- School of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Song Zhu
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China; Jiangsu Center for Applied Mathematics (CUMT), Xuzhou 221116, China.
| |
Collapse
|
2
|
Cui Q, Cao J, Abdel-Aty M, Kashkynbayev A. Global practical finite-time synchronization of disturbed inertial neural networks by delayed impulsive control. Neural Netw 2025; 181:106873. [PMID: 39522417 DOI: 10.1016/j.neunet.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This paper delves into the practical finite-time synchronization (FTS) problem for inertial neural networks (INNs) with external disturbances. Firstly, based on Lyapunov theory, the local practical FTS of INNs with bounded external disturbances can be realized by effective finite time control. Then, building upon the local results, we extend the synchronization to a global practical level under delayed impulsive control. By designing appropriate hybrid controllers, the global practical FTS criteria of disturbed INNs are obtained and the corresponding settling time is estimated. In addition, for impulsive control, the maximum impulsive interval is used to describe the frequency at which the impulses occur. We optimize the maximum impulsive interval, aiming to minimize impulses occurrence, which directly translates to reduced control costs. Moreover, by comparing the global FTS results for INNs without external disturbances, it can be found that the existence of perturbations necessitates either higher impulsive intensity or denser impulses to maintain networks synchronization. Two examples are shown to demonstrate the reasonableness of designed hybrid controllers.
Collapse
Affiliation(s)
- Qian Cui
- School of Mathematics, Southeast University, Nanjing 210096, China.
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing 210096, China.
| | - Mahmoud Abdel-Aty
- Deanship of Graduate Studies and Scientific Research, Ahlia University, Manama 10878, Bahrain; Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Ardak Kashkynbayev
- Department of Mathematics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
3
|
Jiang Y, Zhu S, Liu X, Wen S, Mu C. Input-to-state stability of delayed memristor-based inertial neural networks via non-reduced order method. Neural Netw 2024; 178:106545. [PMID: 39053198 DOI: 10.1016/j.neunet.2024.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
This paper is concerned with the input-to-state stability (ISS) for a kind of delayed memristor-based inertial neural networks (DMINNs). Based on the nonsmooth analysis and stability theory, novel delay-dependent and delay-independent criteria on the ISS of DMINNs are obtained by constructing different Lyapunov functions. Moreover, compared with the reduced order approach used in the previous works, this paper consider the ISS of DMINNs via non-reduced order approach. Directly analysis the model of DMINNs can better maintain its physical backgrounds, which reduces the complexity of calculations and is more rigorous in practical application. Additionally, the novel proposed results on the ISS of DMINNs here incorporate and complement the existing studies on memristive neural network dynamical systems. Lastly, a numerical example is provided to show that the obtained criteria are reliable.
Collapse
Affiliation(s)
- Yuxin Jiang
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Song Zhu
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Xiaoyang Liu
- School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Shiping Wen
- Centre for Artificial Intelligence, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Chaoxu Mu
- School of Electrical and Automation Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Sun J, Wang Y, Liu P, Wen S, Wang Y. Memristor-Based Neural Network Circuit With Multimode Generalization and Differentiation on Pavlov Associative Memory. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:3351-3362. [PMID: 36129863 DOI: 10.1109/tcyb.2022.3200751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most of the classical conditioning laws implemented by existing circuits are involved in learning and forgetting between only three neurons, and the problems between multiple neurons are not considered. In this article, a multimode generalization and differentiation circuit for the Pavlov associative memory is proposed based on memristors. The designed circuit is mainly composed of voltage control modules, synaptic neuron modules, and inhibition modules. The secondary differentiation is accomplished through the process of associative learning and forgetting among multiple neurons. The process of multiple generalization and differentiation is realized based on the nonvolatility and thresholding properties of memristors. The extinction inhibition and differentiation inhibition in forgetting is considered through the inhibition modules. The Pavlov associative memory neural network with multimodal generalization and differentiation may provide a reference for the further development of brain-like intelligence.
Collapse
|
5
|
Sheng Y, Gong H, Zeng Z. Global synchronization of complex-valued neural networks with unbounded time-varying delays. Neural Netw 2023; 162:309-317. [PMID: 36934692 DOI: 10.1016/j.neunet.2023.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
This paper investigates global synchronization of complex-valued neural networks (CVNNs) with unbounded time-varying delays. By applying analytical method and inequality techniques, an algebraic criterion is established to ensure global synchronization of the CVNNs via a devised feedback controller, which generalizes some existing outcomes. Finally, two numerical simulations and one application in image encryption are provided to verify the effectiveness of the theoretical results.
Collapse
Affiliation(s)
- Yin Sheng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Haoyu Gong
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Zhigang Zeng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| |
Collapse
|
6
|
Wang X, Yu Y, Cai J, Yang N, Shi K, Zhong S, Adu K, Tashi N. Multiple Mismatched Synchronization for Coupled Memristive Neural Networks With Topology-Based Probability Impulsive Mechanism on Time Scales. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:1485-1498. [PMID: 34495857 DOI: 10.1109/tcyb.2021.3104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article is concerned with the exponential synchronization of coupled memristive neural networks (CMNNs) with multiple mismatched parameters and topology-based probability impulsive mechanism (TPIM) on time scales. To begin with, a novel model is designed by taking into account three types of mismatched parameters, including: 1) mismatched dimensions; 2) mismatched connection weights; and 3) mismatched time-varying delays. Then, the method of auxiliary-state variables is adopted to deal with the novel model, which implies that the presented novel model can not only use any isolated system (regard as a node) in the coupled system to synchronize the states of CMNNs but also can use an external node, that is, not affiliated to the coupled system to synchronize the states of CMNNs. Moreover, the TPIM is first proposed to efficiently schedule information transmission over the network, possibly subject to a series of nonideal factors. The novel control protocol is more robust against these nonideal factors than the traditional impulsive control mechanism. By means of the Lyapunov-Krasovskii functional, robust analysis approach, and some inequality processing techniques, exponential synchronization conditions unifying the continuous-time and discrete-time systems are derived on the framework of time scales. Finally, a numerical example is provided to illustrate the effectiveness of the main results.
Collapse
|
7
|
Global polynomial stabilization of proportional delayed inertial memristive neural networks. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Delay-dependent and Order-dependent Conditions for Stability and Stabilization of Fractional-order Memristive Neural Networks with Time-varying Delays. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Stabilization and lag synchronization of proportional delayed impulsive complex-valued inertial neural networks. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Singh S, Kumar U, Das S, Cao J. Global Exponential Stability of Inertial Cohen–Grossberg Neural Networks with Time-Varying Delays via Feedback and Adaptive Control Schemes: Non-reduction Order Approach. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Song X, Man J, Park JH, Song S. Finite-Time Synchronization of Reaction-Diffusion Inertial Memristive Neural Networks via Gain-Scheduled Pinning Control. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5045-5056. [PMID: 33819162 DOI: 10.1109/tnnls.2021.3068734] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For the considered reaction-diffusion inertial memristive neural networks (IMNNs), this article proposes a novel gain-scheduled generalized pinning control scheme, where three pinning control strategies are involved and 2n controller gains can be scheduled for different system parameters. Moreover, a time delay is considered in the controller to make it has a memory function. With the designed controller, drive-and-response systems can be synchronized within a finite-time interval. Note that the final finite-time synchronization criterion is obtained in the forms of linear matrix inequalities (LMIs) by introducing a memristor-dependent sign function into the controller and constructing a new Lyapunov-Krasovskii functional (LKF). Furthermore, by utilizing some improved integral inequality methods, the conservatism of the main results can be greatly reduced. Finally, three numerical examples are provided to illustrate the feasibility, superiority, and practicability of this article.
Collapse
|
12
|
Yu T, Cao J, Rutkowski L, Luo YP. Finite-Time Synchronization of Complex-Valued Memristive-Based Neural Networks via Hybrid Control. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3938-3947. [PMID: 33566775 DOI: 10.1109/tnnls.2021.3054967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The finite-time synchronization problem is investigated for the master-slave complex-valued memristive neural networks in this article. A novel Lyapunov-function based finite-time stability criterion with impulsive effects is proposed and utilized to design the decentralized finite-time synchronization controller. Not only the settling time but also the attractive domain with respect to the impulsive gain and average impulsive interval, as well as initial values is derived according to the sufficient synchronization condition. Two examples are outlined to illustrate the validity of our hybrid control strategy.
Collapse
|
13
|
Zhou Y, Zhang H, Zeng Z. Quasisynchronization of Memristive Neural Networks With Communication Delays via Event-Triggered Impulsive Control. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:7682-7693. [PMID: 33296323 DOI: 10.1109/tcyb.2020.3035358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article considers the quasisynchronization of memristive neural networks (MNNs) with communication delays via event-triggered impulsive control (ETIC). In view of the limited communication and bandwidth, we adopt a novel switching event-triggered mechanism (ETM) that not only decreases the times of controller update and the amount of data sent out but also eliminates the Zeno behavior. By using an appropriate Lyapunov function, several algebraic conditions are given for quasisynchronization of MNNs with communication delays. More important, there is no restriction on the derivation of the Lyapunov function, even if it is an increasing function over a period of time. Then, we further propose a switching ETM depending on communication delays and aperiodic sampling, which is more economical and practical and can directly avoid Zeno behavior. Finally, two simulations are presented to validate the effectiveness of the proposed results.
Collapse
|
14
|
Yu T, Wang H, Cao J, Xue C. Finite-time stabilization of memristive neural networks via two-phase method. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Long C, Zhang G, Zeng Z, Hu J. Finite-time stabilization of complex-valued neural networks with proportional delays and inertial terms: A non-separation approach. Neural Netw 2022; 148:86-95. [DOI: 10.1016/j.neunet.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
|
16
|
Intermittent Control Based Exponential Synchronization of Inertial Neural Networks with Mixed Delays. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10574-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Shi J, Zeng Z. Anti-Synchronization of Delayed State-Based Switched Inertial Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:2540-2549. [PMID: 31536030 DOI: 10.1109/tcyb.2019.2938201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, global anti-synchronization control for a class of state-based switched inertial neural networks (SBSINNs) with time-varying delays is considered. Based on the hybrid control strategies and Lyapunov stability theory, several criteria are obtained to ensure global anti-synchronization of the underlying SBSINNs. Furthermore, we consider the global asymptotic anti-synchronization directly from the SBSINNs themselves with a nonreduced-order method. Finally, a numerical simulation is given to illustrate the effectiveness of the results.
Collapse
|
18
|
Zhou Y, Zhang H, Zeng Z. Synchronization of memristive neural networks with unknown parameters via event-triggered adaptive control. Neural Netw 2021; 139:255-264. [PMID: 33831645 DOI: 10.1016/j.neunet.2021.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/15/2022]
Abstract
This paper considers the drive-response synchronization of memristive neural networks (MNNs) with unknown parameters, where the unbounded discrete and bounded distributed time-varying delays are involved. Aiming at the unknown parameters of MNNs, the updating law of weight in response system and the gain of adaptive controller are proposed to realize the synchronization of delayed MNNs. In view of the limited communication and bandwidth, the event-triggered mechanism is introduced to adaptive control, which not only decreases the times of controller update and the amount of data sending out but also enables synchronization when parameters of MNNs are unknown. In addition, a relative threshold strategy, which is relative to fixed threshold strategy, is proposed to increase the inter-execution intervals and to improve the control effect. When the parameters of MNNs are known, the algebraic criteria of synchronization are established via event-triggered state feedback control by exploiting inequality techniques and calculus theorems. Finally, one simulation is presented to validate the effectiveness of the proposed results.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Hao Zhang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Zhigang Zeng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| |
Collapse
|
19
|
Sheng Y, Huang T, Zeng Z, Li P. Exponential Stabilization of Inertial Memristive Neural Networks With Multiple Time Delays. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:579-588. [PMID: 31689230 DOI: 10.1109/tcyb.2019.2947859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates the global exponential stabilization (GES) of inertial memristive neural networks with discrete and distributed time-varying delays (DIMNNs). By introducing the inertial term into memristive neural networks (MNNs), DIMNNs are formulated as the second-order differential equations with discontinuous right-hand sides. Via a variable transformation, the initial DIMNNs are rewritten as the first-order differential equations. By exploiting the theories of differential inclusion, inequality techniques, and the comparison strategy, the p th moment GES ( p ≥ 1 ) of the addressed DIMNNs is presented in terms of algebraic inequalities within the sense of Filippov, which enriches and extends some published results. In addition, the global exponential stability of MNNs is also performed in the form of an M-matrix, which contains some existing ones as special cases. Finally, two simulations are carried out to validate the correctness of the theories, and an application is developed in pseudorandom number generation.
Collapse
|
20
|
State bounding for fuzzy memristive neural networks with bounded input disturbances. Neural Netw 2020; 134:163-172. [PMID: 33316722 DOI: 10.1016/j.neunet.2020.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/30/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
This paper investigates the state bounding problem of fuzzy memristive neural networks (FMNNs) with bounded input disturbances. By using the characters of Metzler, Hurwitz and nonnegative matrices, this paper obtains the exact delay-independent and delay-dependent boundary ranges of the solution, which have less conservatism than the results in existing literatures. The validity of the results is verified by two numerical examples.
Collapse
|
21
|
Wang L, Wu J, Wang X. Finite-Time Stabilization of Memristive Neural Networks with Time Delays. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10390-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|