Liang Z, Luo T, Hu K, Ma X, Zhu Z. An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection.
IEEE TRANSACTIONS ON CYBERNETICS 2021;
51:4553-4566. [PMID:
31940581 DOI:
10.1109/tcyb.2019.2960302]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the Iϵ+ indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest Iϵ+ value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., I SDE+ , SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.
Collapse