Wu W, Ma X, Wang Q, Gong M, Gao Q. Learning deep representation and discriminative features for clustering of multi-layer networks.
Neural Netw 2024;
170:405-416. [PMID:
38029721 DOI:
10.1016/j.neunet.2023.11.053]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
The multi-layer network consists of the interactions between different layers, where each layer of the network is depicted as a graph, providing a comprehensive way to model the underlying complex systems. The layer-specific modules of multi-layer networks are critical to understanding the structure and function of the system. However, existing methods fail to characterize and balance the connectivity and specificity of layer-specific modules in networks because of the complicated inter- and intra-coupling of various layers. To address the above issues, a joint learning graph clustering algorithm (DRDF) for detecting layer-specific modules in multi-layer networks is proposed, which simultaneously learns the deep representation and discriminative features. Specifically, DRDF learns the deep representation with deep nonnegative matrix factorization, where the high-order topology of the multi-layer network is gradually and precisely characterized. Moreover, it addresses the specificity of modules with discriminative feature learning, where the intra-class compactness and inter-class separation of pseudo-labels of clusters are explored as self-supervised information, thereby providing a more accurate method to explicitly model the specificity of the multi-layer network. Finally, DRDF balances the connectivity and specificity of layer-specific modules with joint learning, where the overall objective of the graph clustering algorithm and optimization rules are derived. The experiments on ten multi-layer networks showed that DRDF not only outperforms eight baselines on graph clustering but also enhances the robustness of algorithms.
Collapse