1
|
Li J, Kong X, Sun L, Chen X, Ouyang G, Li X, Chen S. Identification of autism spectrum disorder based on electroencephalography: A systematic review. Comput Biol Med 2024; 170:108075. [PMID: 38301514 DOI: 10.1016/j.compbiomed.2024.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/22/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social communication and repetitive and stereotyped behaviors. According to the World Health Organization, about 1 in 100 children worldwide has autism. With the global prevalence of ASD, timely and accurate diagnosis has been essential in enhancing the intervention effectiveness for ASD children. Traditional ASD diagnostic methods rely on clinical observations and behavioral assessment, with the disadvantages of time-consuming and lack of objective biological indicators. Therefore, automated diagnostic methods based on machine learning and deep learning technologies have emerged and become significant since they can achieve more objective, efficient, and accurate ASD diagnosis. Electroencephalography (EEG) is an electrophysiological monitoring method that records changes in brain spontaneous potential activity, which is of great significance for identifying ASD children. By analyzing EEG data, it is possible to detect abnormal synchronous neuronal activity of ASD children. This paper gives a comprehensive review of the EEG-based ASD identification using traditional machine learning methods and deep learning approaches, including their merits and potential pitfalls. Additionally, it highlights the challenges and the opportunities ahead in search of more effective and efficient methods to automatically diagnose autism based on EEG signals, which aims to facilitate automated ASD identification.
Collapse
Affiliation(s)
- Jing Li
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaoli Kong
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Linlin Sun
- Neuroscience Research Institute, Peking University, Beijing, 100191, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Beijing, 100191, China
| | - Xu Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, 100120, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100032, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Shengyong Chen
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
2
|
Wu Y, Gao D, Fang Y, Xu X, Gao H, Ju Z. SDE-YOLO: A Novel Method for Blood Cell Detection. Biomimetics (Basel) 2023; 8:404. [PMID: 37754155 PMCID: PMC10526168 DOI: 10.3390/biomimetics8050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
This paper proposes an improved target detection algorithm, SDE-YOLO, based on the YOLOv5s framework, to address the low detection accuracy, misdetection, and leakage in blood cell detection caused by existing single-stage and two-stage detection algorithms. Initially, the Swin Transformer is integrated into the back-end of the backbone to extract the features in a better way. Then, the 32 × 32 network layer in the path-aggregation network (PANet) is removed to decrease the number of parameters in the network while increasing its accuracy in detecting small targets. Moreover, PANet substitutes traditional convolution with depth-separable convolution to accurately recognize small targets while maintaining a fast speed. Finally, replacing the complete intersection over union (CIOU) loss function with the Euclidean intersection over union (EIOU) loss function can help address the imbalance of positive and negative samples and speed up the convergence rate. The SDE-YOLO algorithm achieves a mAP of 99.5%, 95.3%, and 93.3% on the BCCD blood cell dataset for white blood cells, red blood cells, and platelets, respectively, which is an improvement over other single-stage and two-stage algorithms such as SSD, YOLOv4, and YOLOv5s. The experiment yields excellent results, and the algorithm detects blood cells very well. The SDE-YOLO algorithm also has advantages in accuracy and real-time blood cell detection performance compared to the YOLOv7 and YOLOv8 technologies.
Collapse
Affiliation(s)
- Yonglin Wu
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110158, China; (Y.W.); (H.G.)
| | - Dongxu Gao
- School of Computing, University of Portsmouth, Portsmouth PO13HE, UK
| | - Yinfeng Fang
- School of Telecommunication Engineering, Hangzhou Dianzi University, Hangzhou 311305, China;
| | - Xue Xu
- China Tobacco Zhejiang Indusirial Co., Ltd., Hangzhou 311500, China;
| | - Hongwei Gao
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110158, China; (Y.W.); (H.G.)
| | - Zhaojie Ju
- School of Computing, University of Portsmouth, Portsmouth PO13HE, UK
| |
Collapse
|
3
|
Zhou X, Chan S, Qiu C, Jiang X, Tang T. Multi-Target Tracking Based on a Combined Attention Mechanism and Occlusion Sensing in a Behavior-Analysis System. SENSORS (BASEL, SWITZERLAND) 2023; 23:2956. [PMID: 36991667 PMCID: PMC10056893 DOI: 10.3390/s23062956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Multi-object tracking (MOT) is a topic of great interest in the field of computer vision, which is essential in smart behavior-analysis systems for healthcare, such as human-flow monitoring, crime analysis, and behavior warnings. Most MOT methods achieve stability by combining object-detection and re-identification networks. However, MOT requires high efficiency and accuracy in complex environments with occlusions and interference. This often increases the algorithm's complexity, affects the speed of tracking calculations, and reduces real-time performance. In this paper, we present an improved MOT method combining an attention mechanism and occlusion sensing as a solution. A convolutional block attention module (CBAM) calculates the weights of space and channel attention from the feature map. The attention weights are used to fuse the feature maps to extract adaptively robust object representations. An occlusion-sensing module detects an object's occlusion, and the appearance characteristics of an occluded object are not updated. This can enhance the model's ability to extract object features and improve appearance feature pollution caused by the short-term occlusion of an object. Experiments on public datasets demonstrate the competitive performance of the proposed method compared with the state-of-the-art MOT methods. The experimental results show that our method has powerful data association capability, e.g., 73.2% MOTA and 73.9% IDF1 on the MOT17 dataset.
Collapse
Affiliation(s)
- Xiaolong Zhou
- College of Electrical and Information Engineering at Quzhou University, Quzhou 324000, China
- Key Lab of Spatial Data Mining & Information Sharing of Ministry of Education, Fuzhou 350108, China
| | - Sixian Chan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
- Hubei Key Laboratory of Intelligent Vision-Based Monitoring for Hydroelectric Engineering, The College of Computer and Information at China Three Gorges University, Yichang 443002, China
| | - Chenhao Qiu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaodan Jiang
- College of Electrical and Information Engineering at Quzhou University, Quzhou 324000, China
| | - Tinglong Tang
- Hubei Key Laboratory of Intelligent Vision-Based Monitoring for Hydroelectric Engineering, The College of Computer and Information at China Three Gorges University, Yichang 443002, China
| |
Collapse
|
4
|
Sun J, Gao H, Wang X, Yu J. Scale Enhancement Pyramid Network for Small Object Detection from UAV Images. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1699. [PMID: 36421553 PMCID: PMC9689004 DOI: 10.3390/e24111699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Object detection is challenging in large-scale images captured by unmanned aerial vehicles (UAVs), especially when detecting small objects with significant scale variation. Most solutions employ the fusion of different scale features by building multi-scale feature pyramids to ensure that the detail and semantic information are abundant. Although feature fusion benefits object detection, it still requires the long-range dependencies information necessary for small objects with significant scale variation detection. We propose a simple yet effective scale enhancement pyramid network (SEPNet) to address these problems. A SEPNet consists of a context enhancement module (CEM) and feature alignment module (FAM). Technically, the CEM combines multi-scale atrous convolution and multi-branch grouped convolution to model global relationships. Additionally, it enhances object feature representation, preventing features with lost spatial information from flowing into the feature pyramid network (FPN). The FAM adaptively learns offsets of pixels to preserve feature consistency. The FAM aims to adjust the location of sampling points in the convolutional kernel, effectively alleviating information conflict caused by the fusion of adjacent features. Results indicate that the SEPNet achieves an AP score of 18.9% on VisDrone, which is 7.1% higher than the AP score of state-of-the-art detectors RetinaNet achieves an AP score of 81.5% on PASCAL VOC.
Collapse
Affiliation(s)
- Jian Sun
- School of Graduate, Shenyang Ligong University, Shenyang 110159, China
| | - Hongwei Gao
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
- China State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuna Wang
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Jiahui Yu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310058, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
5
|
Li R, Liu D, Li Z, Liu J, Zhou J, Liu W, Liu B, Fu W, Alhassan AB. A novel EEG decoding method for a facial-expression-based BCI system using the combined convolutional neural network and genetic algorithm. Front Neurosci 2022; 16:988535. [PMID: 36177358 PMCID: PMC9513431 DOI: 10.3389/fnins.2022.988535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple types of brain-control systems have been applied in the field of rehabilitation. As an alternative scheme for balancing user fatigue and the classification accuracy of brain–computer interface (BCI) systems, facial-expression-based brain control technologies have been proposed in the form of novel BCI systems. Unfortunately, existing machine learning algorithms fail to identify the most relevant features of electroencephalogram signals, which further limits the performance of the classifiers. To address this problem, an improved classification method is proposed for facial-expression-based BCI (FE-BCI) systems, using a convolutional neural network (CNN) combined with a genetic algorithm (GA). The CNN was applied to extract features and classify them. The GA was used for hyperparameter selection to extract the most relevant parameters for classification. To validate the superiority of the proposed algorithm used in this study, various experimental performance results were systematically evaluated, and a trained CNN-GA model was constructed to control an intelligent car in real time. The average accuracy across all subjects was 89.21 ± 3.79%, and the highest accuracy was 97.71 ± 2.07%. The superior performance of the proposed algorithm was demonstrated through offline and online experiments. The experimental results demonstrate that our improved FE-BCI system outperforms the traditional methods.
Collapse
Affiliation(s)
- Rui Li
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
- Xi'an People's Hospital, Xi'an, China
- *Correspondence: Rui Li
| | - Di Liu
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Zhijun Li
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Jinli Liu
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Jincao Zhou
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Weiping Liu
- Xi'an People's Hospital, Xi'an, China
- Weiping Liu
| | - Bo Liu
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Weiping Fu
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Ahmad Bala Alhassan
- Department of Electrical and Information Technology, King Mongkut's University of Technology, Bangkok, Thailand
| |
Collapse
|