1
|
Muhammad Saqib S, Iqbal M, Tahar Ben Othman M, Shahazad T, Yasin Ghadi Y, Al-Amro S, Mazhar T. Lumpy skin disease diagnosis in cattle: A deep learning approach optimized with RMSProp and MobileNetV2. PLoS One 2024; 19:e0302862. [PMID: 39102387 PMCID: PMC11299804 DOI: 10.1371/journal.pone.0302862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/14/2024] [Indexed: 08/07/2024] Open
Abstract
Lumpy skin disease (LSD) is a critical problem for cattle populations, affecting both individual cows and the entire herd. Given cattle's critical role in meeting human needs, effective management of this disease is essential to prevent significant losses. The study proposes a deep learning approach using the MobileNetV2 model and the RMSprop optimizer to address this challenge. Tests on a dataset of healthy and lumpy cattle images show an impressive accuracy of 95%, outperforming existing benchmarks by 4-10%. These results underline the potential of the proposed methodology to revolutionize the diagnosis and management of skin diseases in cattle farming. Researchers and graduate students are the audience for our paper.
Collapse
Affiliation(s)
- Sheikh Muhammad Saqib
- Institute of Computing and Information Technology, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Iqbal
- Institute of Computing and Information Technology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Tariq Shahazad
- Department of Computer Science, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Yazeed Yasin Ghadi
- Department of Computer Science and Software Engineering, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Sulaiman Al-Amro
- Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia
| | - Tehseen Mazhar
- Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|
2
|
Silva-Aravena F, Núñez Delafuente H, Gutiérrez-Bahamondes JH, Morales J. A Hybrid Algorithm of ML and XAI to Prevent Breast Cancer: A Strategy to Support Decision Making. Cancers (Basel) 2023; 15:cancers15092443. [PMID: 37173910 PMCID: PMC10177162 DOI: 10.3390/cancers15092443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Worldwide, the coronavirus has intensified the management problems of health services, significantly harming patients. Some of the most affected processes have been cancer patients' prevention, diagnosis, and treatment. Breast cancer is the most affected, with more than 20 million cases and at least 10 million deaths by 2020. Various studies have been carried out to support the management of this disease globally. This paper presents a decision support strategy for health teams based on machine learning (ML) tools and explainability algorithms (XAI). The main methodological contributions are: first, the evaluation of different ML algorithms that allow classifying patients with and without cancer from the available dataset; and second, an ML methodology mixed with an XAI algorithm, which makes it possible to predict the disease and interpret the variables and how they affect the health of patients. The results show that first, the XGBoost Algorithm has a better predictive capacity, with an accuracy of 0.813 for the train data and 0.81 for the test data; and second, with the SHAP algorithm, it is possible to know the relevant variables and their level of significance in the prediction, and to quantify the impact on the clinical condition of the patients, which will allow health teams to offer early and personalized alerts for each patient.
Collapse
Affiliation(s)
- Fabián Silva-Aravena
- Facultad de Ciencias Sociales y Económicas, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
| | - Hugo Núñez Delafuente
- Doctorado en Sistemas de Ingeniería, Facultad de Ingeniería, Universidad de Talca, Camino Los Niches Km 1, Curicó 3340000, Chile
| | - Jimmy H Gutiérrez-Bahamondes
- Doctorado en Sistemas de Ingeniería, Facultad de Ingeniería, Universidad de Talca, Camino Los Niches Km 1, Curicó 3340000, Chile
| | - Jenny Morales
- Facultad de Ciencias Sociales y Económicas, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
| |
Collapse
|
3
|
Madhu C, M.S. S. Adaptive Bezier Curve-based Membership Function formulation scheme for interpretable edge detection. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Song Z, Deng B, Wang J, Yi G. An EEG-based systematic explainable detection framework for probing and localizing abnormal patterns in Alzheimer's disease. J Neural Eng 2022; 19. [PMID: 35453136 DOI: 10.1088/1741-2552/ac697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electroencephalography (EEG) is a potential source of downstream biomarkers for the early diagnosis of Alzheimer's disease (AD) due to its low-cost, non-invasive, and portable advantages. Accurately detecting AD-induced patterns from EEG signals is essential for understanding AD-related neurodegeneration at the EEG level and further evaluating the risk of AD at an early stage. This paper proposes a deep learning-based, functional explanatory framework that probes AD abnormalities from short-sequence EEG data. APPROACH The framework is a learning-based automatic detection system consisting of three encoding pathways that analyze EEG signals in frequency, complexity, and synchronous domains. We integrated the proposed EEG descriptors with the neural network components into one learning system to detect AD patterns. A transfer learning-based model was used to learn the deep representations, and a modified generative adversarial module was attached to the model to overcome feature sparsity. Furthermore, we utilized activation mapping to obtain the AD-related neurodegeneration at brain rhythm, dynamic complexity, and functional connectivity levels. MAIN RESULTS The proposed framework can accurately (100%) detect AD patterns based on our raw EEG recordings without delicate preprocessing. Meanwhile, the system indicates that 1) the power of different brain rhythms exhibits abnormal in the frontal lobes of AD patients, and such abnormality spreads to central lobes in the alpha and beta rhythms, 2) the difference in nonlinear complexity varies with the temporal scales, and 3) all the connections of pair-wise brain regions except bilateral temporal connectivity are weak in AD patterns. The proposed method outperforms other related methods in detection performance. SIGNIFICANCE We provide a new method for revealing abnormalities and corresponding localizations in different feature domains of EEG from AD patients. This study is a significant foundation for our future work on identifying individuals at high risk of AD at an early stage.
Collapse
Affiliation(s)
- Zhenxi Song
- Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China, Tianjin, 300072, CHINA
| | - Bin Deng
- Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China, Tianjin, Tianjin, 300072, CHINA
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China, P. R. China, Tianjin, Tianjin, 300072, CHINA
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China, Tianjin, Tianjin, 300072, CHINA
| |
Collapse
|
5
|
Yao XJ, Zhu ZQ, Wang SH, Zhang YD. CSGBBNet: An Explainable Deep Learning Framework for COVID-19 Detection. Diagnostics (Basel) 2021; 11:1712. [PMID: 34574053 PMCID: PMC8470460 DOI: 10.3390/diagnostics11091712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 virus has swept the world and brought great impact to various fields, gaining wide attention from all walks of life since the end of 2019. At present, although the global epidemic situation is leveling off and vaccine doses have been administered in a large amount, confirmed cases are still emerging around the world. To make up for the missed diagnosis caused by the uncertainty of nucleic acid polymerase chain reaction (PCR) test, utilizing lung CT examination as a combined detection method to improve the diagnostic rate becomes a necessity. Our research considered the time-consuming and labor-intensive characteristics of the traditional CT analyzing process, and developed an efficient deep learning framework named CSGBBNet to solve the binary classification task of COVID-19 images based on a COVID-Seg model for image preprocessing and a GBBNet for classification. The five runs with random seed on the test set showed our novel framework can rapidly analyze CT scan images and give out effective results for assisting COVID-19 detection, with the mean accuracy of 98.49 ± 1.23%, the sensitivity of 99.00 ± 2.00%, the specificity of 97.95 ± 2.51%, the precision of 98.10 ± 2.61%, and the F1 score of 98.51 ± 1.22%. Moreover, our model CSGBBNet performs better when compared with seven previous state-of-the-art methods. In this research, the aim is to link together biomedical research and artificial intelligence and provide some insights into the field of COVID-19 detection.
Collapse
Affiliation(s)
- Xu-Jing Yao
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Zi-Quan Zhu
- Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32608, USA;
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
6
|
Li Z, Zhang J, Li B, Gu X, Luo X. COVID-19 diagnosis on CT scan images using a generative adversarial network and concatenated feature pyramid network with an attention mechanism. Med Phys 2021; 48:4334-4349. [PMID: 34117783 PMCID: PMC8420535 DOI: 10.1002/mp.15044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) has caused hundreds of thousands of infections and deaths. Efficient diagnostic methods could help curb its global spread. The purpose of this study was to develop and evaluate a method for accurately diagnosing COVID-19 based on computed tomography (CT) scans in real time. METHODS We propose an architecture named "concatenated feature pyramid network" ("Concat-FPN") with an attention mechanism, by concatenating feature maps of multiple. The proposed architecture is then used to form two networks, which we call COVID-CT-GAN and COVID-CT-DenseNet, the former for data augmentation and the latter for data classification. RESULTS The proposed method is evaluated on 3 different numbers of magnitude of COVID-19 CT datasets. Compared with the method without GANs for data augmentation or the original network auxiliary classifier generative adversarial network, COVID-CT-GAN increases the accuracy by 2% to 3%, the recall by 2% to 4%, the precision by 1% to 3%, the F1-score by 1% to 3%, and the area under the curve by 1% to 4%. Compared with the original network DenseNet-201, COVID-CT-DenseNet increases the accuracy by 1% to 3%, the recall by 4% to 9%, the precision by 1%, the F1-score by 1% to 3%, and the area under the curve by 2%. CONCLUSION The experimental results show that our method improves the efficiency of diagnosing COVID-19 on CT images, and helps overcome the problem of limited training data when using deep learning methods to diagnose COVID-19. SIGNIFICANCE Our method can help clinicians build deep learning models using their private datasets to achieve automatic diagnosis of COVID-19 with a high precision.
Collapse
Affiliation(s)
- Zonggui Li
- School of Information Science and EngineeringYunnan UniversityKunmingChina
| | - Junhua Zhang
- School of Information Science and EngineeringYunnan UniversityKunmingChina
| | - Bo Li
- School of Information Science and EngineeringYunnan UniversityKunmingChina
| | - Xiaoying Gu
- School of Information Science and EngineeringYunnan UniversityKunmingChina
| | - Xudong Luo
- School of Information Science and EngineeringYunnan UniversityKunmingChina
| |
Collapse
|
7
|
Amin J, Anjum MA, Sharif M, Saba T, Tariq U. An intelligence design for detection and classification of COVID19 using fusion of classical and convolutional neural network and improved microscopic features selection approach. Microsc Res Tech 2021; 84:2254-2267. [PMID: 33964096 PMCID: PMC8237066 DOI: 10.1002/jemt.23779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/15/2021] [Accepted: 04/03/2021] [Indexed: 12/31/2022]
Abstract
Coronavirus19 is caused due to infection in the respiratory system. It is the type of RNA virus that might infect animal and human species. In the severe stage, it causes pneumonia in human beings. In this research, hand‐crafted and deep microscopic features are used to classify lung infection. The proposed work consists of two phases; in phase I, infected lung region is segmented using proposed U‐Net deep learning model. The hand‐crafted features are extracted such as histogram orientation gradient (HOG), noise to the harmonic ratio (NHr), and segmentation based fractal texture analysis (SFTA) from the segmented image, and optimum features are selected from each feature vector using entropy. In phase II, local binary patterns (LBPs), speeded up robust feature (Surf), and deep learning features are extracted using a pretrained network such as inceptionv3, ResNet101 from the input CT images, and select optimum features based on entropy. Finally, the optimum selected features using entropy are fused in two ways, (i) The hand‐crafted features (HOG, NHr, SFTA, LBP, SURF) are horizontally concatenated/fused (ii) The hand‐crafted features (HOG, NHr, SFTA, LBP, SURF) are combined/fused with deep features. The fused optimum features vector is passed to the ensemble models (Boosted tree, bagged tree, and RUSBoosted tree) in two ways for the COVID19 classification, (i) classification using fused hand‐crafted features (ii) classification using fusion of hand‐crafted features and deep features. The proposed methodology is tested /evaluated on three benchmark datasets. Two datasets employed for experiments and results show that hand‐crafted & deep microscopic feature's fusion provide better results compared to only hand‐crafted fused features.
Collapse
Affiliation(s)
- Javaria Amin
- Department of Computer Science, University of Wah, Wah, Pakistan
| | | | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad - Wah Campus, Wah Cantt, Pakistan, 4740, Pakistan
| | - Tanzila Saba
- Artificial Intelligence and Data Analytics (AIDA) Lab CCIS Prince Sultan University, Riyadh, Saudi Arabia
| | - Usman Tariq
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
8
|
Umar Ibrahim A, Ozsoz M, Serte S, Al‐Turjman F, Habeeb Kolapo S. Convolutional neural network for diagnosis of viral pneumonia and COVID-19 alike diseases. EXPERT SYSTEMS 2021; 39:e12705. [PMID: 34177037 PMCID: PMC8209916 DOI: 10.1111/exsy.12705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/03/2021] [Indexed: 05/09/2023]
Abstract
Reverse-Transcription Polymerase Chain Reaction (RT-PCR) method is currently the gold standard method for detection of viral strains in human samples, but this technique is very expensive, take time and often leads to misdiagnosis. The recent outbreak of COVID-19 has led scientists to explore other options such as the use of artificial intelligence driven tools as an alternative or a confirmatory approach for detection of viral pneumonia. In this paper, we utilized a Convolutional Neural Network (CNN) approach to detect viral pneumonia in x-ray images using a pretrained AlexNet model thereby adopting a transfer learning approach. The dataset used for the study was obtained in the form of optical Coherence Tomography and chest X-ray images made available by Kermany et al. (2018, https://doi.org/10.17632/rscbjbr9sj.3) with a total number of 5853 pneumonia (positive) and normal (negative) images. To evaluate the average efficiency of the model, the dataset was split into on 50:50, 60:40, 70:30, 80:20 and 90:10 for training and testing respectively. To evaluate the performance of the model, 10 K Cross-validation was carried out. The performance of the model using overall dataset was compared with the means of cross-validation and the currents state of arts. The classification model has shown high performance in terms of accuracy, sensitivity and specificity. 70:30 split performed better compare to other splits with accuracy of 98.73%, sensitivity of 98.59% and specificity of 99.84%.
Collapse
Affiliation(s)
| | - Mehmet Ozsoz
- Department of Biomedical EngineeringNear East UniversityNicosiaMersin 10Turkey
| | - Sertan Serte
- Department of Electrical EngineeringNear East UniversityNicosiaMersin 10Turkey
| | - Fadi Al‐Turjman
- Department of Artificial Intelligence, Research Center for AI and IoTNear East UniversityNicosiaMersin 10Turkey
| | | |
Collapse
|
9
|
Puttagunta M, Ravi S. Medical image analysis based on deep learning approach. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:24365-24398. [PMID: 33841033 PMCID: PMC8023554 DOI: 10.1007/s11042-021-10707-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/28/2020] [Accepted: 02/10/2021] [Indexed: 05/05/2023]
Abstract
Medical imaging plays a significant role in different clinical applications such as medical procedures used for early detection, monitoring, diagnosis, and treatment evaluation of various medical conditions. Basicsof the principles and implementations of artificial neural networks and deep learning are essential for understanding medical image analysis in computer vision. Deep Learning Approach (DLA) in medical image analysis emerges as a fast-growing research field. DLA has been widely used in medical imaging to detect the presence or absence of the disease. This paper presents the development of artificial neural networks, comprehensive analysis of DLA, which delivers promising medical imaging applications. Most of the DLA implementations concentrate on the X-ray images, computerized tomography, mammography images, and digital histopathology images. It provides a systematic review of the articles for classification, detection, and segmentation of medical images based on DLA. This review guides the researchers to think of appropriate changes in medical image analysis based on DLA.
Collapse
Affiliation(s)
- Muralikrishna Puttagunta
- Department of Computer Science, School of Engineering and Technology, Pondicherry University, Pondicherry, India
| | - S. Ravi
- Department of Computer Science, School of Engineering and Technology, Pondicherry University, Pondicherry, India
| |
Collapse
|
10
|
Tong X, Wei J, Sun B, Su S, Zuo Z, Wu P. ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation. Diagnostics (Basel) 2021; 11:501. [PMID: 33809048 PMCID: PMC7999819 DOI: 10.3390/diagnostics11030501] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/29/2023] Open
Abstract
Segmentation of skin lesions is a challenging task because of the wide range of skin lesion shapes, sizes, colors, and texture types. In the past few years, deep learning networks such as U-Net have been successfully applied to medical image segmentation and exhibited faster and more accurate performance. In this paper, we propose an extended version of U-Net for the segmentation of skin lesions using the concept of the triple attention mechanism. We first selected regions using attention coefficients computed by the attention gate and contextual information. Second, a dual attention decoding module consisting of spatial attention and channel attention was used to capture the spatial correlation between features and improve segmentation performance. The combination of the three attentional mechanisms helped the network to focus on a more relevant field of view of the target. The proposed model was evaluated using three datasets, ISIC-2016, ISIC-2017, and PH2. The experimental results demonstrated the effectiveness of our method with strong robustness to the presence of irregular borders, lesion and skin smooth transitions, noise, and artifacts.
Collapse
Affiliation(s)
| | - Junyu Wei
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (X.T.); (B.S.); (S.S.); (Z.Z.); (P.W.)
| | | | | | | | | |
Collapse
|
11
|
Wu D, Wang C, Wu Y, Wang QC, Huang DS. Attention Deep Model With Multi-Scale Deep Supervision for Person Re-Identification. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2021. [DOI: 10.1109/tetci.2020.3034606] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
QAIS-DSNN: Tumor Area Segmentation of MRI Image with Optimized Quantum Matched-Filter Technique and Deep Spiking Neural Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6653879. [PMID: 33542920 PMCID: PMC7843186 DOI: 10.1155/2021/6653879] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023]
Abstract
Tumor segmentation in brain MRI images is a noted process that can make the tumor easier to diagnose and lead to effective radiotherapy planning. Providing and building intelligent medical systems can be considered as an aid for physicians. In many cases, the presented methods' reliability is at a high level, and such systems are used directly. In recent decades, several methods of segmentation of various images, such as MRI, CT, and PET, have been proposed for brain tumors. Advanced brain tumor segmentation has been a challenging issue in the scientific community. The reason for this is the existence of various tumor dimensions with disproportionate boundaries in medical imaging. This research provides an optimized MRI segmentation method to diagnose tumors. It first offers a preprocessing approach to reduce noise with a new method called Quantum Matched-Filter Technique (QMFT). Then, the deep spiking neural network (DSNN) is implemented for segmentation using the conditional random field structure. However, a new algorithm called the Quantum Artificial Immune System (QAIS) is used in its SoftMax layer due to its slowness and nonsegmentation and the identification of suitable features for selection and extraction. The proposed approach, called QAIS-DSNN, has a high ability to segment and distinguish brain tumors from MRI images. The simulation results using the BraTS2018 dataset show that the accuracy of the proposed approach is 98.21%, average error-squared rate is 0.006, signal-to-noise ratio is 97.79 dB, and lesion structure criteria including the tumor nucleus are 80.15%. The improved tumor is 74.50%, and the entire tumor is 91.92%, which shows a functional advantage over similar previous methods. Also, the execution time of this method is 2.58 seconds.
Collapse
|
13
|
Połap D, Srivastava G. Neural image reconstruction using a heuristic validation mechanism. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05046-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR. CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:91916-91923. [PMID: 34192100 PMCID: PMC8043420 DOI: 10.1109/access.2020.2994762] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 05/08/2023]
Abstract
Coronavirus (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spread of COVID-19 seems to have a detrimental effect on the global economy and health. A positive chest X-ray of infected patients is a crucial step in the battle against COVID-19. Early results suggest that abnormalities exist in chest X-rays of patients suggestive of COVID-19. This has led to the introduction of a variety of deep learning systems and studies have shown that the accuracy of COVID-19 patient detection through the use of chest X-rays is strongly optimistic. Deep learning networks like convolutional neural networks (CNNs) need a substantial amount of training data. Because the outbreak is recent, it is difficult to gather a significant number of radiographic images in such a short time. Therefore, in this research, we present a method to generate synthetic chest X-ray (CXR) images by developing an Auxiliary Classifier Generative Adversarial Network (ACGAN) based model called CovidGAN. In addition, we demonstrate that the synthetic images produced from CovidGAN can be utilized to enhance the performance of CNN for COVID-19 detection. Classification using CNN alone yielded 85% accuracy. By adding synthetic images produced by CovidGAN,the accuracy increased to 95%. We hope this method will speed up COVID-19 detection and lead to more robust systems of radiology.
Collapse
Affiliation(s)
- Abdul Waheed
- Maharaja Agrasen Institute of TechnologyNew Delhi110086India
| | - Muskan Goyal
- Maharaja Agrasen Institute of TechnologyNew Delhi110086India
| | - Deepak Gupta
- Maharaja Agrasen Institute of TechnologyNew Delhi110086India
| | - Ashish Khanna
- Maharaja Agrasen Institute of TechnologyNew Delhi110086India
| | - Fadi Al-Turjman
- Artificial Intelligence DepartmentResearch Center for AI and IoTNear East University99138MersinTurkey
| | | |
Collapse
|