1
|
Li C, Zhang G, Zhao B, Xie D, Du H, Duan X, Hu Y, Zhang L. Advances of surgical robotics: image-guided classification and application. Natl Sci Rev 2024; 11:nwae186. [PMID: 39144738 PMCID: PMC11321255 DOI: 10.1093/nsr/nwae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 08/16/2024] Open
Abstract
Surgical robotics application in the field of minimally invasive surgery has developed rapidly and has been attracting increasingly more research attention in recent years. A common consensus has been reached that surgical procedures are to become less traumatic and with the implementation of more intelligence and higher autonomy, which is a serious challenge faced by the environmental sensing capabilities of robotic systems. One of the main sources of environmental information for robots are images, which are the basis of robot vision. In this review article, we divide clinical image into direct and indirect based on the object of information acquisition, and into continuous, intermittent continuous, and discontinuous according to the target-tracking frequency. The characteristics and applications of the existing surgical robots in each category are introduced based on these two dimensions. Our purpose in conducting this review was to analyze, summarize, and discuss the current evidence on the general rules on the application of image technologies for medical purposes. Our analysis gives insight and provides guidance conducive to the development of more advanced surgical robotics systems in the future.
Collapse
Affiliation(s)
- Changsheng Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gongzi Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
| | - Baoliang Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongsheng Xie
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hailong Du
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
| | - Xingguang Duan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihai Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100141, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Atmaca Ö, Liu J, Ly TJ, Bajraktari F, Pott PP. Spatial sensitivity distribution assessment and Monte Carlo simulations for needle-based bioimpedance imaging during venipuncture using the finite element method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3831. [PMID: 38690649 DOI: 10.1002/cnm.3831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Despite being among the most common medical procedures, needle insertions suffer from a high error rate. Impedance measurements using electrode-equipped needles offer promise for improved tissue targeting and reduced errors. Impedance visualization usually requires an extensive pre-measured impedance dataset for tissue differentiation and knowledge of the electric fields contributing to the resulting impedances. This work presents two finite element simulation approaches for both problems. The first approach describes the generation of a multitude of impedances with Monte Carlo simulations for both, homogeneous and inhomogeneous tissue to circumvent the need to rely on previously measured data. These datasets could be used for tissue discrimination. The second method describes the simulation of the spatial sensitivity distribution of an electrode layout. Two singularity analysis methods were employed to determine the bulk of the sensitivity within a finite volume, which in turn enables consistent 3D visualization. The modeled electrode layout consists of 12 electrodes radially placed around a hypodermic needle. Electrical excitation was simulated using two neighboring electrodes for current carriage and voltage pickup, which resulted in 12 distinct bipolar excitation states. Both, the impedance simulations and the respective singularity analysis methods were compared with each other. The results show that the statistical spread of impedances is highly dependent on the tissue type and its inhomogeneities. The bounded bulk of sensitivities of both methods are of similar extent and symmetry. Future models should incorporate more detailed tissue properties such as anisotropy or changing material properties due to tissue deformation to gain more accurate predictions.
Collapse
Affiliation(s)
- Ömer Atmaca
- Institute of Medical Device Technology (IMT), University of Stuttgart, Baden-Württemberg, Germany
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Baden-Württemberg, Germany
| | - Jan Liu
- Institute of Medical Device Technology (IMT), University of Stuttgart, Baden-Württemberg, Germany
| | - Toni J Ly
- Institute of Medical Device Technology (IMT), University of Stuttgart, Baden-Württemberg, Germany
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), Stuttgart, Baden-Württemberg, Germany
| | - Flakë Bajraktari
- Institute of Medical Device Technology (IMT), University of Stuttgart, Baden-Württemberg, Germany
| | - Peter P Pott
- Institute of Medical Device Technology (IMT), University of Stuttgart, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Yang Z, Wen S, Qi Q, Zhang X, Shen H, Chen G, Xu J, Lv Z, Ji A. Design of composite puncture blood collection system and research on puncture force. Comput Methods Biomech Biomed Engin 2024:1-12. [PMID: 38587364 DOI: 10.1080/10255842.2024.2338474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Venous blood collection testing is one of the most commonly used medical diagnostic methods. Compared with conventional venous blood collection, robotic collection can reduce needle-stick injuries, medical staff workload, and infection risk; allow doctor-patient isolation; and improve collection reliability. Existing venous blood collection robots use rigid puncture needles, which can easily puncture the lower wall of blood vessels, causing vessel damage and collection failure. This paper proposes a bionic blood collection strategy based on a composite puncture needle that mimics the structure and function of mosquito mouthparts. A bionic composite puncture needle insertion system with puncture-force sensing was designed, and venipuncture forces were simulated and mathematically modelled. A prototype insertion system was built and used in an experiment, which demonstrated effective composite puncture blood collection and explored the factors influencing puncture force. Puncture force decreases with increased puncture speed and angle and with a decreased needle diameter. This provides a basis for optimising the parameters of blood collection robots.
Collapse
Affiliation(s)
- Zhikang Yang
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Shikun Wen
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qian Qi
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaoshu Zhang
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huan Shen
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guangming Chen
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jiajun Xu
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhuhai Lv
- Department of Neurosurgery, Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Aihong Ji
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
4
|
Ning G, Liang H, Zhang X, Liao H. Autonomous Robotic Ultrasound Vascular Imaging System With Decoupled Control Strategy for External-Vision-Free Environments. IEEE Trans Biomed Eng 2023; 70:3166-3177. [PMID: 37227912 DOI: 10.1109/tbme.2023.3279114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Ultrasound (US) probes scan over the surface of the human body to acquire US images in clinical vascular US diagnosis. However, due to the deformation and specificity of different human surfaces, the relationship between the scan trajectory of the skin and the internal tissues is not fully correlated, which poses a challenge for autonomous robotic US imaging in a dynamic and external-vision-free environment. Here, we propose a decoupled control strategy for autonomous robotic vascular US imaging in an environment without external vision. METHODS The proposed system is divided into outer-loop posture control and inner-loop orientation control, which are separately determined by a deep learning (DL) agent and a reinforcement learning (RL) agent. First, we use a weakly supervised US vessel segmentation network to estimate the probe orientation. In the outer loop control, we use a force-guided reinforcement learning agent to maintain a specific angle between the US probe and the skin in the dynamic imaging processes. Finally, the orientation and the posture are integrated to complete the imaging process. RESULTS Evaluation experiments on several volunteers showed that our RUS could autonomously perform vascular imaging in arms with different stiffness, curvature, and size without additional system adjustments. Furthermore, our system achieved reproducible imaging and reconstruction of dynamic targets without relying on vision-based surface information. CONCLUSION AND SIGNIFICANCE Our system and control strategy provides a novel framework for the application of US robots in complex and external-vision-free environments.
Collapse
|
5
|
Hu S, Lu R, Zhu Y, Zhu W, Jiang H, Bi S. Application of Medical Image Navigation Technology in Minimally Invasive Puncture Robot. SENSORS (BASEL, SWITZERLAND) 2023; 23:7196. [PMID: 37631733 PMCID: PMC10459274 DOI: 10.3390/s23167196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Microneedle puncture is a standard minimally invasive treatment and surgical method, which is widely used in extracting blood, tissues, and their secretions for pathological examination, needle-puncture-directed drug therapy, local anaesthesia, microwave ablation needle therapy, radiotherapy, and other procedures. The use of robots for microneedle puncture has become a worldwide research hotspot, and medical imaging navigation technology plays an essential role in preoperative robotic puncture path planning, intraoperative assisted puncture, and surgical efficacy detection. This paper introduces medical imaging technology and minimally invasive puncture robots, reviews the current status of research on the application of medical imaging navigation technology in minimally invasive puncture robots, and points out its future development trends and challenges.
Collapse
Affiliation(s)
| | - Rongjian Lu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; (S.H.)
| | | | | | | | | |
Collapse
|
6
|
He T, Guo C, Liu H, Jiang L. A venipuncture robot with decoupled position and attitude guided by near-infrared vision and force feedback. Int J Med Robot 2023:e2512. [PMID: 36809654 DOI: 10.1002/rcs.2512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND This study aims to develop a venipuncture robot to replace manual venipuncture to ease the heavy workload, lower the risk of 2019-nCoV infection, and boost venipuncture success rates. METHOD The robot is designed with decoupled position and attitude. It consists of a 3-degree-of-freedom positioning manipulator to locate the needle and a 3-degree-of-freedom end-effector that is always vertical to adjust the yaw and pitch angles of the needle. The near-infrared vision and laser sensors obtain the three-dimensional information of puncture positions, while the change in force detects the state feedback of punctures. RESULTS The experimental results demonstrate that the venipuncture robot has a compact design, flexible motion, high positioning accuracy and repeatability (0.11 and 0.04 mm), and a high success rate when puncturing the phantom. CONCLUSION This paper presents a decoupled position and attitude venipuncture robot guided by near-infrared vision and force feedback to replace manual venipuncture. The robot is compact, dexterous, and accurate, which helps to improve the success rate of venipuncture, and it is expected to achieve fully automatic venipuncture in the future.
Collapse
Affiliation(s)
- Tianbao He
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Chuangqiang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Hansong Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Li Jiang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
He T, Guo C, Jiang L. Puncture site decision method for venipuncture robot based on near-infrared vision and multiobjective optimization. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2022; 66:13-23. [PMID: 36570559 PMCID: PMC9758675 DOI: 10.1007/s11431-022-2232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Venipuncture robots have superior perception and stability to humans and are expected to replace manual venipuncture. However, their use is greatly restricted because they cannot make decisions regarding the puncture sites. Thus, this study presents a multi-information fusion method for determining puncture sites for venipuncture robots to improve their autonomy in the case of limited resources. Here, numerous images have been gathered and processed to establish an image dataset of human forearms for training the U-Net with the soft attention mechanism (SAU-Net) for vein segmentation. Then, the veins are segmented from the images, feature information is extracted based on near-infrared vision, and a multiobjective optimization model for puncture site decision is provided by considering the depth, diameter, curvature, and length of the vein to determine the optimal puncture site. Experiments demonstrate that the method achieves a segmentation accuracy of 91.2% and a vein extraction rate of 86.7% while achieving the Pareto solution set (average time: 1.458 s) and optimal results for each vessel. Finally, a near-infrared camera is applied to the venipuncture robot to segment veins and determine puncture sites in real time, with the results transmitted back to the robot for an attitude adjustment. Consequently, this method can enhance the autonomy of venipuncture robots if implemented dramatically.
Collapse
Affiliation(s)
- TianBao He
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001 China
| | - ChuangQiang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001 China
| | - Li Jiang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001 China
| |
Collapse
|
8
|
Leipheimer J, Balter M, Chen A, Yarmush M. Design and Evaluation of a Handheld Robotic Device for Peripheral Catheterization. J Med Device 2022; 16:021015. [PMID: 35284032 PMCID: PMC8905093 DOI: 10.1115/1.4053688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/14/2022] [Indexed: 08/30/2024] Open
Abstract
Medical robots provide enhanced dexterity, vision, and safety for a broad range of procedures. In this article, we present a handheld, robotic device capable of performing peripheral catheter insertions with high accuracy and repeatability. The device utilizes a combination of ultrasound imaging, miniaturized robotics, and machine learning to safely and efficiently introduce a catheter sheath into a peripheral blood vessel. Here, we present the mechanical design and experimental validation of the device, known as VeniBot. Additionally, we present results on our ultrasound deep learning algorithm for vessel segmentation, and performance on tissue-mimicking phantom models that simulate difficult peripheral catheter placement. Overall, the device achieved first-attempt success rates of 97 ± 4% for vessel punctures and 89 ± 7% for sheath cannulations on the tissue mimicking models (n = 240). The results from these studies demonstrate the viability of a handheld device for performing semi-automated peripheral catheterization. In the future, the use of this device has the potential to improve clinical workflow and reduce patient discomfort by assuring a safe and efficient procedure.
Collapse
Affiliation(s)
| | - Max Balter
- Rutgers University, Piscataway, NJ 08854
| | - Alvin Chen
- Rutgers University, Piscataway, NJ 08854
| | | |
Collapse
|
9
|
Salman H, Akkar HA. An intelligent controller for ultrasound-based venipuncture through precise vein localization and stable needle insertion. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Ning G, Zhang X, Liao H. Autonomic Robotic Ultrasound Imaging System Based on Reinforcement Learning. IEEE Trans Biomed Eng 2021; 68:2787-2797. [PMID: 33497322 DOI: 10.1109/tbme.2021.3054413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In this paper, we introduce an autonomous robotic ultrasound (US) imaging system based on reinforcement learning (RL). The proposed system and framework are committed to controlling the US probe to perform fully autonomous imaging of a soft, moving and marker-less target based only on single RGB images of the scene. METHODS We propose several different approaches and methods to achieve the following objectives: real-time US probe controlling, soft surface constant force tracking and automatic imaging. First, to express the state of the robotic US imaging task, we proposed a state representation model to reduce the dimensionality of the imaging state and encode the force and US information into the scene image space. Then, an RL agent is trained by a policy gradient theorem based RL model with the single RGB image as the only observation. To achieve adaptable constant force tracking between the US probe and the soft moving target, we propose a force-to-displacement control method based on an admittance controller. RESULTS In the simulation experiment, we verified the feasibility of the integrated method. Furthermore, we evaluated the proposed force-to-displacement method to demonstrate the safety and effectiveness of adaptable constant force tracking. Finally, we conducted phantom and volunteer experiments to verify the feasibility of the method on a real system. CONCLUSION The experiments indicated that our approaches were stable and feasible in the autonomic and accurate control of the US probe. SIGNIFICANCE The proposed system has potential application value in the image-guided surgery and robotic surgery.
Collapse
|
11
|
Rasmussen ET, Shiao EC, Zourelias L, Halbreiner MS, Passineau MJ, Murali S, Riviere CN. Coronary vessel detection methods for organ-mounted robots. Int J Med Robot 2021; 17:e2297. [PMID: 34081821 DOI: 10.1002/rcs.2297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND HeartLander is a tethered robot walker that utilizes suction to adhere to the beating heart. HeartLander can be used for minimally invasive administration of cardiac medications or ablation of tissue. In order to administer injections safely, HeartLander must avoid coronary vasculature. METHODS Doppler ultrasound signals were recorded using a custom-made cardiac phantom and used to classify different coronary vessel properties. The classification was performed by two machine learning algorithms, the support vector machines and a deep convolutional neural network. These algorithms were then validated in animal trials. RESULTS Accuracy of identifying vessels above turbulent flow reached greater than 92% in phantom trials and greater than 98% in animal trials. CONCLUSIONS Through the use of two machine learning algorithms, HeartLander has shown the ability to identify different sized vasculature proximally above turbulent flow. These results indicate that it is feasible to use Doppler ultrasound to identify and avoid coronary vasculature during cardiac interventions using HeartLander.
Collapse
Affiliation(s)
- Eric T Rasmussen
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Eric C Shiao
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lee Zourelias
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Michael S Halbreiner
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Michael J Passineau
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Srinivas Murali
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Cameron N Riviere
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Abstract
With the continuous development of computer science and technology, symbol recognition systems may be converted from two-dimensional space to three-dimensional space. Therefore, this article mainly introduces the symbol recognition system based on 3D stereo vision. The three-dimensional image is taken by the visual coordinate measuring machine in two places on the left and right. Perform binocular stereo matching on the edge of the feature points of the two images. A corner detection algorithm combining SUSAN and Harris is used to detect the left and right camera calibration templates. The two-dimensional coordinate points of the object are determined by the image stereo matching module, and the three-dimensional discrete coordinate points of the object space can be obtained according to the transformation relationship between the image coordinates and the actual object coordinates. Then draw the three-dimensional model of the object through the three-dimensional drawing software. Experimental data shows that the logic resources and memory resources occupied by image preprocessing account for 30.4% and 27.4% of the entire system, respectively. The results show that the system can calibrate the internal and external parameters of the camera. In this way, the camera calibration result will be more accurate and the range will be wider. At the same time, it can effectively make up for the shortcomings of traditional modeling techniques to ensure the measurement accuracy of the detection system.
Collapse
Affiliation(s)
- Linlin Wang
- School of Art, Guangxi University of Foreign Languages, Nanning, Guangxi, China
- Department of Design, Graduate School of Keimyung University, Daegu, Korea
| |
Collapse
|
13
|
Rosen JM, Adams LV, Geiling J, Curtis KM, Mosher RE, Ball PA, Grigg EB, Hebert KA, Grodan JR, Jurmain JC, Loucks C, Macedonia CR, Kun L. Telehealth's New Horizon: Providing Smart Hospital-Level Care in the Home. Telemed J E Health 2021; 27:1215-1224. [PMID: 33656918 DOI: 10.1089/tmj.2020.0448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the COVID-19 pandemic, medical providers have expanded telehealth into daily practice, with many medical and behavioral health care visits provided remotely over video or through phone. The telehealth market was already facilitating home health care with increasing levels of sophistication before COVID-19. Among the emerging telehealth practices, telephysical therapy; teleneurology; telemental health; chronic care management of congestive heart failure, chronic obstructive pulmonary disease, diabetes; home hospice; home mechanical ventilation; and home dialysis are some of the most prominent. Home telehealth helps streamline hospital/clinic operations and ensure the safety of health care workers and patients. The authors recommend that we expand home telehealth to a comprehensive delivery of medical care across a distributed network of hospitals and homes, linking patients to health care workers through the Internet of Medical Things using in-home equipment, including smart medical monitoring devices to create a "medical smart home." This expanded telehealth capability will help doctors care for patients flexibly, remotely, and safely as a part of standard operations and during emergencies such as a pandemic. This model of "telehomecare" is already being implemented, as shown herein with examples. The authors envision a future in which providers and hospitals transition medical care delivery to the home just as, during the COVID-19 pandemic, students adapted to distance learning and adults transitioned to remote work from home. Many of our homes in the future may have a "smart medical suite" as well as a "smart home office."
Collapse
Affiliation(s)
- Joseph M Rosen
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Thayer School of Engineering, Hanover, New Hampshire, USA
| | - Lisa V Adams
- Department of Medicine and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - James Geiling
- Department of Medicine and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kevin M Curtis
- Connected Care/Center for Telehealth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Robyn E Mosher
- Department of Medicine and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Perry A Ball
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Eliot B Grigg
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA.,Seattle Children's Hospital, Seattle, Washington, USA
| | - Kendra A Hebert
- Geisel School of Medicine at Dartmouth, Biomedical Research, Hanover, New Hampshire, USA
| | | | | | - Charles Loucks
- John Picard & Associates, Orem, Utah, USA.,Taurean Holdings, LLC, Orem, Utah, USA
| | - Christian R Macedonia
- Lancaster Maternal-Fetal Medicine, Lancaster General Hospital, Lancaster, Pennsylvania, USA
| | - Luis Kun
- William Perry Center for Hemispheric Defense Studies, National Defense University, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Chen S, Wang F, Lin Y, Shi Q, Wang Y. Ultrasound-guided needle insertion robotic system for percutaneous puncture. Int J Comput Assist Radiol Surg 2021; 16:475-484. [PMID: 33484429 DOI: 10.1007/s11548-020-02300-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Ultrasound (US)-guided percutaneous puncture technology can realize real-time, minimally invasive interventional therapy without radiation. The location accuracy of the puncture needle directly determines the precision and safety of the operation. It is a challenge for novices and young surgeons to perform a free-hand puncture guided by the ultrasound images to achieve the desired accuracy. This work aims to develop a robotic system to assist surgeons to perform percutaneous punctures with high precision. METHODS An US-guided puncture robot was designed to allow the mounting and control of the needle to achieve localization and insertion. The US probe fitted within the puncture robot was held by a passive arm. Moreover, the puncture robot was calibrated with a novel calibration method to achieve coordinate transformation between the robot and the US image. The system allowed the operators to plan the puncture target and puncture path on US images, and the robot performed needle insertion automatically. Five groups of puncture experiments were performed to verify the validity and accuracy of the proposed robotic system. RESULTS Assisted by the robotic system, the positioning and orientation accuracies of the needle insertion were 0.9 ± 0.29 mm and 0.76 ± 0.34°, respectively. These are improved compared with the results obtained with the free-hand puncture (1.82 ± 0.51 mm and 2.79 ± 1.32°, respectively). Moreover, the proposed robotic system can reduce the operation time and number of needle insertions (14.28 ± 3.21 s and one needle insertion, respectively), compared with the free-hand puncture (25.14 ± 6.09 s and 1.96 ± 0.68 needle insertions, respectively). CONCLUSION A robotic system for percutaneous puncture guided by US images was developed and demonstrated. The experimental results indicate that the proposed system is accurate and feasible. It can assist novices and young surgeons to perform the puncture operation with increased accuracy.
Collapse
Affiliation(s)
- Shihang Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fang Wang
- Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanping Lin
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Qiusheng Shi
- Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanli Wang
- Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Bimbraw K, Fox E, Weinberg G, Hammond FL. Towards Sonomyography-Based Real-Time Control of Powered Prosthesis Grasp Synergies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4753-4757. [PMID: 33019053 DOI: 10.1109/embc44109.2020.9176483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sonomyography (ultrasound imaging) offers a way of classifying complex muscle activity and configuration, with higher SNR and lower hardware requirements than sEMG, using various supervised learning algorithms. The physiological image obtained from an ultrasound probe can be used to train a classification algorithm which can run on real time ultrasound images. The predicted values can then be mapped onto assistive or teleoperated robots. This paper describes the classification of ultrasound information and its subsequent mapping onto a soft robotic gripper as a step toward direct synergy control. Support Vector Classification algorithm has been used to classify ultrasound information into a set of defined states: open, closed, pinch and hook grasps. Once the model was trained with the ultrasound image data, real time input from the forearm was used to predict these states. The final predicted state output then set joint stiffnesses in the soft actuators, changing their interactions or synergies, to obtain the corresponding soft robotic gripper states. Data collection was carried out on five different test subjects for eight trials each. An average accuracy percentage of 93% was obtained averaged over all data. This real-time ultrasound-based control of a soft robotic gripper constitutes a promising step toward intuitive and robust biosignal-based control methods for robots.
Collapse
|
16
|
Chao D, Li Q, Hu G. WITHDRAWN: The Role of Intercostal Nerve Block Combined with Puncture Surgery Robot Controlled by Fuzzy Proportion Integral Differential Algorithm under the Guidance of MRI Image in the Treatment of Lung Cancer. Neurosci Lett 2020:135204. [PMID: 32590042 DOI: 10.1016/j.neulet.2020.135204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
This article has been withdrawn at the request of the Editor-in-Chief. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Dong Chao
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou City, 730050, Gansu Province, China.
| | - Qingxin Li
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou City, 730050, Gansu Province, China
| | - Gawei Hu
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou City, 730050, Gansu Province, China
| |
Collapse
|
17
|
Gao H, Lu S, Wang T. Motion path planning of 6-DOF industrial robot based on fuzzy control algorithm. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-179600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Huanbing Gao
- School of Information and Electrical Engineering, Shandong Jianzhu University, Shandong, China
- Human-Computer Intelligent Technology and Robot System Key Laboratory of Universities, Shandong, China
| | - Shouyin Lu
- School of Information and Electrical Engineering, Shandong Jianzhu University, Shandong, China
- Human-Computer Intelligent Technology and Robot System Key Laboratory of Universities, Shandong, China
| | - Tao Wang
- School of Information and Electrical Engineering, Shandong Jianzhu University, Shandong, China
- Human-Computer Intelligent Technology and Robot System Key Laboratory of Universities, Shandong, China
| |
Collapse
|
18
|
Chen AI, Balter ML, Maguire TJ, Yarmush ML. Deep learning robotic guidance for autonomous vascular access. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-0148-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Ilyas F, Burbridge B, Babyn P. Health Care-Associated Infections and the Radiology Department. J Med Imaging Radiat Sci 2019; 50:596-606.e1. [PMID: 31623975 PMCID: PMC7104925 DOI: 10.1016/j.jmir.2019.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/01/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Health care-associated infections (HCAIs) are a significant concern for both health care workers (HCWs) and patients. They are a major contributing factor of disease in industrialized countries, and are responsible for significant morbidity, mortality, and a direct annual financial loss of $6-7 billion in North America alone. They are an increasingly challenging health issue due to multidrug-resistant pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci among others, along with an increasing number of susceptible patients. Over the last three decades, the risk of HCAIs has increased in the radiology department (RD) in part because of an increased number of patients visiting the department and an increase in the utilization of imaging modalities. In this review, we will discuss how patients and staff can be exposed to HCAIs in the RD, including contaminated inanimate surfaces, radiology equipment, and associated medical devices. As the role of medical imaging has extended from primarily diagnosis to include more interventions, the implementation and development of standardized infection minimization protocols and infection control procedures are vital in the RD, particularly in interventional radiology. With globalisation and the rapid movement of people regionally, nationally, and globally, there is greater risk of exposure to contagious diseases such as Ebola, especially if infected patients are undiagnosed when they travel. For effective infection control, advanced training and education of HCWs in the RD is essential. The purpose of this article is to provide an overview of HCAIs as related to activities of the RD. We will discuss the following major topics including the variety of HCAIs commonly encountered, the role of the RD in HCAIs, transmission of infections to patients and HCWs in the RD, standard infection prevention measures, and the management of susceptible/infected patients in the RD. We shall also examine the role of, and the preparedness of, HCWs, including RD technologists and interventional radiologists, who may be exposed to undiagnosed, yet infected patients. We shall conclude with a brief discussion of the role of further research related to HCAIs. Learning Objectives After the completion of this review article, the readers will • Understand the exposure and role of radiology department in health care-associated infections, • Know the causes/modes/transmission of infections in radiology department, • Be conscious of standard disinfection protocols, • Be aware of current and future strategies required for the effective control of health care-associated infection in the radiology department. This is a CME article and provides the equivalent of 2 hours of continuing education that may be applied to your professional development credit system. A 10-question multiple-choice quiz follows this reading. Please note that no formalized credit (category A) is available from CAMRT.
Collapse
Affiliation(s)
- Fatima Ilyas
- Department of Medical Imaging, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, Saskatchewan, Canada.
| | | | | |
Collapse
|
20
|
Leipheimer JM, Balter ML, Chen AI, Pantin EJ, Davidovich AE, Labazzo KS, Yarmush ML. First-in-human evaluation of a hand-held automated venipuncture device for rapid venous blood draws. TECHNOLOGY 2019; 7:98-107. [PMID: 32292800 PMCID: PMC7156113 DOI: 10.1142/s2339547819500067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Obtaining venous access for blood sampling or intravenous (IV) fluid delivery is an essential first step in patient care. However, success rates rely heavily on clinician experience and patient physiology. Difficulties in obtaining venous access result in missed sticks and injury to patients, and typically require alternative access pathways and additional personnel that lengthen procedure times, thereby creating unnecessary costs to healthcare facilities. Here, we present the first-in-human assessment of an automated robotic venipuncture device designed to safely perform blood draws on peripheral forearm veins. The device combines ultrasound imaging and miniaturized robotics to identify suitable vessels for cannulation and robotically guide an attached needle toward the lumen center. The device demonstrated results comparable to or exceeding that of clinical standards, with a success rate of 87% on all participants (n = 31), a 97% success rate on nondifficult venous access participants (n = 25), and an average procedure time of 93 ± 30 s (n = 31). In the future, this device can be extended to other areas of vascular access such as IV catheterization, central venous access, dialysis, and arterial line placement.
Collapse
Affiliation(s)
- Josh M Leipheimer
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Max L Balter
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Alvin I Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Enrique J Pantin
- Robert Wood Johnson University Hospital, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Alexander E Davidovich
- Icahn School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA
| | - Kristen S Labazzo
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Balter ML, Leipheimer JM, Chen AI, Shrirao A, Maguire TJ, Yarmush ML. Automated end-to-end blood testing at the point-of-care: Integration of robotic phlebotomy with downstream sample processing. TECHNOLOGY 2018; 6:59-66. [PMID: 30057935 PMCID: PMC6058193 DOI: 10.1142/s2339547818500048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Diagnostic blood testing is the most commonly performed clinical procedure in the world, and influences the majority of medical decisions made in hospital and laboratory settings. However, manual blood draw success rates are dependent on clinician skill and patient physiology, and results are generated almost exclusively in centralized labs from large-volume samples using labor-intensive analytical techniques. This paper presents a medical device that enables end-to-end blood testing by performing blood draws and providing diagnostic results in a fully automated fashion at the point-of-care. The system couples an image-guided venipuncture robot, developed to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. We first demonstrate a white blood cell assay on the analyzer, using a blood mimicking fluid spiked with fluorescent microbeads, where the area of the packed bead layer is correlated with the bead concentration. Next we perform experiments to evaluate the pumping efficiency of the sample handling module. Finally, studies are conducted on the integrated device - from blood draw to analysis - using blood vessel phantoms to assess the accuracy and repeatability of the resulting white blood cell assay.
Collapse
Affiliation(s)
- M L Balter
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ 08854, USA
| | - J M Leipheimer
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ 08854, USA
| | - A I Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ 08854, USA
| | - A Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ 08854, USA
| | - T J Maguire
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ 08854, USA
| | - M L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
22
|
Fromholtz A, Balter ML, Chen AI, Leipheimer JM, Shrirao A, Maguire TJ, Yarmush ML. Design and Evaluation of a Robotic Device for Automated Tail Vein Cannulations in Rodent Models. J Med Device 2017; 11:0410081-410087. [PMID: 29230256 DOI: 10.1115/1.4038011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/14/2017] [Indexed: 11/08/2022] Open
Abstract
Preclinical testing in rodent models is a ubiquitous part of modern biomedical research and commonly involves accessing the venous bloodstream for blood sampling and drug delivery. Manual tail vein cannulation is a time-consuming process and requires significant skill and training, particularly since improperly inserted needles can affect the experimental results and study outcomes. In this paper, we present a miniaturized, robotic medical device for automated, image-guided tail vein cannulations in rodent models. The device is composed of an actuated three degrees-of-freedom (DOFs) needle manipulator, three-dimensional (3D) near-infrared (NIR) stereo cameras, and an animal holding platform. Evaluating the system through a series of workspace simulations and free-space positioning tests, the device exhibited a sufficient work volume for the needle insertion task and submillimeter accuracy over the calibration targets. The results indicate that the device is capable of cannulating tail veins in rodent models as small as 0.3 mm in diameter, the smallest diameter vein required to target.
Collapse
Affiliation(s)
- Alex Fromholtz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Max L Balter
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Alvin I Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Josh M Leipheimer
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Anil Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Timothy J Maguire
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| | - Martin L Yarmush
- Paul and Mary Monroe Distinguished Professor Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 e-mail:
| |
Collapse
|
23
|
Scholten HJ, Pourtaherian A, Mihajlovic N, Korsten HHM, A. Bouwman R. Improving needle tip identification during ultrasound-guided procedures in anaesthetic practice. Anaesthesia 2017; 72:889-904. [DOI: 10.1111/anae.13921] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- H. J. Scholten
- Department of Anaesthesiology; Intensive Care and Pain Medicine; Catharina Hospital; Eindhoven the Netherlands
| | - A. Pourtaherian
- Department of Electrical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | | | - H. H. M. Korsten
- Department of Anaesthesiology; Intensive Care and Pain Medicine; Catharina Hospital; Eindhoven the Netherlands
- Department of Electrical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | - R. A. Bouwman
- Department of Anaesthesiology; Intensive Care and Pain Medicine; Catharina Hospital; Eindhoven the Netherlands
- Department of Electrical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| |
Collapse
|
24
|
Balter ML, Chen AI, Fromholtz A, Gorshkov A, Maguire TJ, Yarmush ML. System Design and Development of a Robotic Device for Automated Venipuncture and Diagnostic Blood Cell Analysis. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2017; 2016:514-520. [PMID: 28239509 DOI: 10.1109/iros.2016.7759102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diagnostic blood testing is the most prevalent medical procedure performed in the world and forms the cornerstone of modern health care delivery. Yet blood tests are still predominantly carried out in centralized labs using large-volume samples acquired by manual venipuncture, and no end-to-end solution from blood draw to sample analysis exists today. Our group is developing a platform device that merges robotic phlebotomy with automated diagnostics to rapidly deliver patient information at the site of the blood draw. The system couples an image-guided venipuncture robot, designed to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. In this paper, we first present the system design and architecture of the integrated device. We then perform a series of in vitro experiments to evaluate the cannulation accuracy of the system on blood vessel phantoms. Next, we assess the effects of vessel diameter, needle gauge, flow rate, and viscosity on the rate of sample collection. Finally, we demonstrate proof-of-concept of a white cell assay on the blood analyzer using in vitro human samples spiked with fluorescently labeled microbeads.
Collapse
Affiliation(s)
- Max L Balter
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Alvin I Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Alex Fromholtz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Alex Gorshkov
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Tim J Maguire
- Chief Executive Officer of VascuLogic, LLC, Piscataway, NJ, USA
| | - Martin L Yarmush
- Paul and Mary Monroe Distinguished Professor of Science and Engineering at Rutgers University
| |
Collapse
|
25
|
Chen AI, Balter ML, Maguire TJ, Yarmush ML. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2016; 9902:388-396. [PMID: 27981261 DOI: 10.1007/978-3-319-46726-9_45] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper presents a portable imaging device designed to detect peripheral blood vessels for cannula insertion that are otherwise difficult to visualize beneath the skin. The device combines near infrared stereo vision, ultrasound, and real-time image analysis to map the 3D structure of subcutaneous vessels. We show that the device can identify adult forearm vessels and be used to guide manual insertions in tissue phantoms with increased first-stick accuracy compared to unassisted cannulation. We also demonstrate that the system may be coupled with a robotic manipulator to perform automated, image-guided venipuncture.
Collapse
|